Crypto++  8.8
Free C++ class library of cryptographic schemes
gf2n.h
Go to the documentation of this file.
1 // gf2n.h - originally written and placed in the public domain by Wei Dai
2 
3 /// \file gf2n.h
4 /// \brief Classes and functions for schemes over GF(2^n)
5 
6 #ifndef CRYPTOPP_GF2N_H
7 #define CRYPTOPP_GF2N_H
8 
9 #include "cryptlib.h"
10 #include "secblock.h"
11 #include "algebra.h"
12 #include "misc.h"
13 #include "asn.h"
14 
15 #include <iosfwd>
16 
17 #if CRYPTOPP_MSC_VERSION
18 # pragma warning(push)
19 # pragma warning(disable: 4231 4275)
20 #endif
21 
22 NAMESPACE_BEGIN(CryptoPP)
23 
24 /// \brief Polynomial with Coefficients in GF(2)
25 /*! \nosubgrouping */
26 class CRYPTOPP_DLL PolynomialMod2
27 {
28 public:
29  /// \name ENUMS, EXCEPTIONS, and TYPEDEFS
30  //@{
31  /// \brief Exception thrown when divide by zero is encountered
32  class DivideByZero : public Exception
33  {
34  public:
35  DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {}
36  };
37 
38  typedef unsigned int RandomizationParameter;
39  //@}
40 
41  /// \name CREATORS
42  //@{
43  /// \brief Construct the zero polynomial
45  /// Copy construct a PolynomialMod2
47 
48  /// \brief Construct a PolynomialMod2 from a word
49  /// \details value should be encoded with the least significant bit as coefficient to x^0
50  /// and most significant bit as coefficient to x^(WORD_BITS-1)
51  /// bitLength denotes how much memory to allocate initially
52  PolynomialMod2(word value, size_t bitLength=WORD_BITS);
53 
54  /// \brief Construct a PolynomialMod2 from big-endian byte array
55  PolynomialMod2(const byte *encodedPoly, size_t byteCount)
56  {Decode(encodedPoly, byteCount);}
57 
58  /// \brief Construct a PolynomialMod2 from big-endian form stored in a BufferedTransformation
59  PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount)
60  {Decode(encodedPoly, byteCount);}
61 
62  /// \brief Create a uniformly distributed random polynomial
63  /// \details Create a random polynomial uniformly distributed over all polynomials with degree less than bitcount
64  PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount)
65  {Randomize(rng, bitcount);}
66 
67  /// \brief Provides x^i
68  /// \return x^i
70  /// \brief Provides x^t0 + x^t1 + x^t2
71  /// \return x^t0 + x^t1 + x^t2
72  static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2);
73  /// \brief Provides x^t0 + x^t1 + x^t2 + x^t3 + x^t4
74  /// \return x^t0 + x^t1 + x^t2 + x^t3 + x^t4
75  static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4);
76  /// \brief Provides x^(n-1) + ... + x + 1
77  /// \return x^(n-1) + ... + x + 1
79 
80  /// \brief The Zero polinomial
81  /// \return the zero polynomial
82  static const PolynomialMod2 & CRYPTOPP_API Zero();
83  /// \brief The One polinomial
84  /// \return the one polynomial
85  static const PolynomialMod2 & CRYPTOPP_API One();
86  //@}
87 
88  /// \name ENCODE/DECODE
89  //@{
90  /// minimum number of bytes to encode this polynomial
91  /*! MinEncodedSize of 0 is 1 */
92  unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());}
93 
94  /// encode in big-endian format
95  /// \details if outputLen < MinEncodedSize, the most significant bytes will be dropped
96  /// if outputLen > MinEncodedSize, the most significant bytes will be padded
97  void Encode(byte *output, size_t outputLen) const;
98  ///
99  void Encode(BufferedTransformation &bt, size_t outputLen) const;
100 
101  ///
102  void Decode(const byte *input, size_t inputLen);
103  ///
104  //* Precondition: bt.MaxRetrievable() >= inputLen
105  void Decode(BufferedTransformation &bt, size_t inputLen);
106 
107  /// encode value as big-endian octet string
108  void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
109  /// decode value as big-endian octet string
111  //@}
112 
113  /// \name ACCESSORS
114  //@{
115  /// number of significant bits = Degree() + 1
116  unsigned int BitCount() const;
117  /// number of significant bytes = ceiling(BitCount()/8)
118  unsigned int ByteCount() const;
119  /// number of significant words = ceiling(ByteCount()/sizeof(word))
120  unsigned int WordCount() const;
121 
122  /// return the n-th bit, n=0 being the least significant bit
123  bool GetBit(size_t n) const {return GetCoefficient(n)!=0;}
124  /// return the n-th byte
125  byte GetByte(size_t n) const;
126 
127  /// the zero polynomial will return a degree of -1
128  signed int Degree() const {return (signed int)(BitCount()-1U);}
129  /// degree + 1
130  unsigned int CoefficientCount() const {return BitCount();}
131  /// return coefficient for x^i
132  int GetCoefficient(size_t i) const
133  {return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;}
134  /// return coefficient for x^i
135  int operator[](unsigned int i) const {return GetCoefficient(i);}
136 
137  ///
138  bool IsZero() const {return !*this;}
139  ///
140  bool Equals(const PolynomialMod2 &rhs) const;
141  //@}
142 
143  /// \name MANIPULATORS
144  //@{
145  ///
146  PolynomialMod2& operator=(const PolynomialMod2& t);
147  ///
148  PolynomialMod2& operator&=(const PolynomialMod2& t);
149  ///
150  PolynomialMod2& operator^=(const PolynomialMod2& t);
151  ///
152  PolynomialMod2& operator+=(const PolynomialMod2& t) {return *this ^= t;}
153  ///
154  PolynomialMod2& operator-=(const PolynomialMod2& t) {return *this ^= t;}
155  ///
156  PolynomialMod2& operator*=(const PolynomialMod2& t);
157  ///
158  PolynomialMod2& operator/=(const PolynomialMod2& t);
159  ///
160  PolynomialMod2& operator%=(const PolynomialMod2& t);
161  ///
162  PolynomialMod2& operator<<=(unsigned int);
163  ///
164  PolynomialMod2& operator>>=(unsigned int);
165 
166  ///
167  void Randomize(RandomNumberGenerator &rng, size_t bitcount);
168 
169  ///
170  void SetBit(size_t i, int value = 1);
171  /// set the n-th byte to value
172  void SetByte(size_t n, byte value);
173 
174  ///
175  void SetCoefficient(size_t i, int value) {SetBit(i, value);}
176 
177  ///
178  void swap(PolynomialMod2 &a) {reg.swap(a.reg);}
179  //@}
180 
181  /// \name UNARY OPERATORS
182  //@{
183  ///
184  bool operator!() const;
185  ///
186  PolynomialMod2 operator+() const {return *this;}
187  ///
188  PolynomialMod2 operator-() const {return *this;}
189  //@}
190 
191  /// \name BINARY OPERATORS
192  //@{
193  ///
194  PolynomialMod2 And(const PolynomialMod2 &b) const;
195  ///
196  PolynomialMod2 Xor(const PolynomialMod2 &b) const;
197  ///
198  PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);}
199  ///
200  PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);}
201  ///
202  PolynomialMod2 Times(const PolynomialMod2 &b) const;
203  ///
204  PolynomialMod2 DividedBy(const PolynomialMod2 &b) const;
205  ///
206  PolynomialMod2 Modulo(const PolynomialMod2 &b) const;
207 
208  ///
209  PolynomialMod2 operator>>(unsigned int n) const;
210  ///
211  PolynomialMod2 operator<<(unsigned int n) const;
212  //@}
213 
214  /// \name OTHER ARITHMETIC FUNCTIONS
215  //@{
216  /// sum modulo 2 of all coefficients
217  unsigned int Parity() const;
218 
219  /// check for irreducibility
220  bool IsIrreducible() const;
221 
222  /// is always zero since we're working modulo 2
223  PolynomialMod2 Doubled() const {return Zero();}
224  ///
225  PolynomialMod2 Squared() const;
226 
227  /// only 1 is a unit
228  bool IsUnit() const {return Equals(One());}
229  /// return inverse if *this is a unit, otherwise return 0
230  PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();}
231 
232  /// greatest common divisor
234  /// calculate multiplicative inverse of *this mod n
236 
237  /// calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))
239  //@}
240 
241  /// \name INPUT/OUTPUT
242  //@{
243  ///
244  friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a);
245  //@}
246 
247 private:
248  friend class GF2NT;
249  friend class GF2NT233;
250 
251  SecWordBlock reg;
252 };
253 
254 ///
255 inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
256 {return a.Equals(b);}
257 ///
258 inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
259 {return !(a==b);}
260 /// compares degree
261 inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
262 {return a.Degree() > b.Degree();}
263 /// compares degree
264 inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
265 {return a.Degree() >= b.Degree();}
266 /// compares degree
267 inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
268 {return a.Degree() < b.Degree();}
269 /// compares degree
270 inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
271 {return a.Degree() <= b.Degree();}
272 ///
273 inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);}
274 ///
275 inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);}
276 ///
277 inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);}
278 ///
279 inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);}
280 ///
281 inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);}
282 ///
283 inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);}
284 ///
285 inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);}
286 
287 // CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations,
288 // but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003
294 
295 /// \brief GF(2^n) with Polynomial Basis
296 class CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> >
297 {
298 public:
299  GF2NP(const PolynomialMod2 &modulus);
300 
301  virtual GF2NP * Clone() const {return new GF2NP(*this);}
302  virtual void DEREncode(BufferedTransformation &bt) const
303  {CRYPTOPP_UNUSED(bt); CRYPTOPP_ASSERT(false);} // no ASN.1 syntax yet for general polynomial basis
304 
305  void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
306  void BERDecodeElement(BufferedTransformation &in, Element &a) const;
307 
308  bool Equal(const Element &a, const Element &b) const
309  {CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);}
310 
311  bool IsUnit(const Element &a) const
312  {CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree()); return !!a;}
313 
314  unsigned int MaxElementBitLength() const
315  {return m;}
316 
317  unsigned int MaxElementByteLength() const
318  {return (unsigned int)BitsToBytes(MaxElementBitLength());}
319 
320  Element SquareRoot(const Element &a) const;
321 
322  Element HalfTrace(const Element &a) const;
323 
324  // returns z such that z^2 + z == a
325  Element SolveQuadraticEquation(const Element &a) const;
326 
327 protected:
328  unsigned int m;
329 };
330 
331 /// \brief GF(2^n) with Trinomial Basis
332 class CRYPTOPP_DLL GF2NT : public GF2NP
333 {
334 public:
335  // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
336  GF2NT(unsigned int t0, unsigned int t1, unsigned int t2);
337 
338  GF2NP * Clone() const {return new GF2NT(*this);}
339  void DEREncode(BufferedTransformation &bt) const;
340 
341  const Element& Multiply(const Element &a, const Element &b) const;
342 
343  const Element& Square(const Element &a) const
344  {return Reduced(a.Squared());}
345 
346  const Element& MultiplicativeInverse(const Element &a) const;
347 
348 protected:
349  const Element& Reduced(const Element &a) const;
350 
351  unsigned int t0, t1;
352  mutable PolynomialMod2 result;
353 };
354 
355 /// \brief GF(2^n) for b233 and k233
356 /// \details GF2NT233 is a specialization of GF2NT that provides Multiply()
357 /// and Square() operations when carryless multiplies is available.
358 class CRYPTOPP_DLL GF2NT233 : public GF2NT
359 {
360 public:
361  // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
362  GF2NT233(unsigned int t0, unsigned int t1, unsigned int t2);
363 
364  GF2NP * Clone() const {return new GF2NT233(*this);}
365 
366  const Element& Multiply(const Element &a, const Element &b) const;
367 
368  const Element& Square(const Element &a) const;
369 };
370 
371 /// \brief GF(2^n) with Pentanomial Basis
372 class CRYPTOPP_DLL GF2NPP : public GF2NP
373 {
374 public:
375  // polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4
376  GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4)
377  : GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t1(t1), t2(t2), t3(t3) {}
378 
379  GF2NP * Clone() const {return new GF2NPP(*this);}
380  void DEREncode(BufferedTransformation &bt) const;
381 
382 private:
383  unsigned int t1, t2, t3;
384 };
385 
386 // construct new GF2NP from the ASN.1 sequence Characteristic-two
387 CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt);
388 
389 NAMESPACE_END
390 
391 #ifndef __BORLANDC__
392 NAMESPACE_BEGIN(std)
393 template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b)
394 {
395  a.swap(b);
396 }
397 NAMESPACE_END
398 #endif
399 
400 #if CRYPTOPP_MSC_VERSION
401 # pragma warning(pop)
402 #endif
403 
404 #endif
Classes for performing mathematics over different fields.
Classes and functions for working with ANS.1 objects.
OID operator+(const OID &lhs, unsigned long rhs)
Append a value to an OID.
std::ostream & operator<<(std::ostream &out, const OID &oid)
Print a OID value.
Definition: asn.h:939
bool operator==(const OID &lhs, const OID &rhs)
Compare two OIDs for equality.
bool operator!=(const OID &lhs, const OID &rhs)
Compare two OIDs for inequality.
Abstract Euclidean domain.
Definition: algebra.h:277
Abstract group.
Definition: algebra.h:27
Abstract ring.
Definition: algebra.h:119
Interface for buffered transformations.
Definition: cryptlib.h:1657
Euclidean domain.
Definition: algebra.h:316
Base class for all exceptions thrown by the library.
Definition: cryptlib.h:164
GF(2^n) with Polynomial Basis.
Definition: gf2n.h:297
bool Equal(const Element &a, const Element &b) const
Compare two elements for equality.
Definition: gf2n.h:308
bool IsUnit(const Element &a) const
Determines whether an element is a unit in the group.
Definition: gf2n.h:311
GF(2^n) with Pentanomial Basis.
Definition: gf2n.h:373
GF(2^n) for b233 and k233.
Definition: gf2n.h:359
const Element & Multiply(const Element &a, const Element &b) const
Multiplies elements in the group.
const Element & Square(const Element &a) const
Square an element in the group.
GF(2^n) with Trinomial Basis.
Definition: gf2n.h:333
const Element & Multiply(const Element &a, const Element &b) const
Multiplies elements in the group.
const Element & MultiplicativeInverse(const Element &a) const
Calculate the multiplicative inverse of an element in the group.
const Element & Square(const Element &a) const
Square an element in the group.
Definition: gf2n.h:343
Exception thrown when divide by zero is encountered.
Definition: gf2n.h:33
Polynomial with Coefficients in GF(2)
Definition: gf2n.h:27
unsigned int MinEncodedSize() const
minimum number of bytes to encode this polynomial
Definition: gf2n.h:92
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const
encode value as big-endian octet string
PolynomialMod2 MultiplicativeInverse() const
return inverse if *this is a unit, otherwise return 0
Definition: gf2n.h:230
void Encode(byte *output, size_t outputLen) const
encode in big-endian format
static PolynomialMod2 Monomial(size_t i)
Provides x^i.
static const PolynomialMod2 & Zero()
The Zero polinomial.
signed int Degree() const
the zero polynomial will return a degree of -1
Definition: gf2n.h:128
bool IsIrreducible() const
check for irreducibility
PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount)
Create a uniformly distributed random polynomial.
Definition: gf2n.h:64
static PolynomialMod2 Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4)
Provides x^t0 + x^t1 + x^t2 + x^t3 + x^t4.
bool IsUnit() const
only 1 is a unit
Definition: gf2n.h:228
PolynomialMod2(word value, size_t bitLength=WORD_BITS)
Construct a PolynomialMod2 from a word.
PolynomialMod2 Doubled() const
is always zero since we're working modulo 2
Definition: gf2n.h:223
PolynomialMod2(const PolynomialMod2 &t)
Copy construct a PolynomialMod2.
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length)
decode value as big-endian octet string
byte GetByte(size_t n) const
return the n-th byte
unsigned int BitCount() const
number of significant bits = Degree() + 1
unsigned int WordCount() const
number of significant words = ceiling(ByteCount()/sizeof(word))
static PolynomialMod2 AllOnes(size_t n)
Provides x^(n-1) + ...
static const PolynomialMod2 & One()
The One polinomial.
static PolynomialMod2 Trinomial(size_t t0, size_t t1, size_t t2)
Provides x^t0 + x^t1 + x^t2.
unsigned int CoefficientCount() const
degree + 1
Definition: gf2n.h:130
PolynomialMod2 InverseMod(const PolynomialMod2 &) const
calculate multiplicative inverse of *this mod n
PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount)
Construct a PolynomialMod2 from big-endian form stored in a BufferedTransformation.
Definition: gf2n.h:59
int operator[](unsigned int i) const
return coefficient for x^i
Definition: gf2n.h:135
unsigned int Parity() const
sum modulo 2 of all coefficients
PolynomialMod2()
Construct the zero polynomial.
unsigned int ByteCount() const
number of significant bytes = ceiling(BitCount()/8)
static void Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d)
calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))
static PolynomialMod2 Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n)
greatest common divisor
PolynomialMod2(const byte *encodedPoly, size_t byteCount)
Construct a PolynomialMod2 from big-endian byte array.
Definition: gf2n.h:55
void SetByte(size_t n, byte value)
set the n-th byte to value
int GetCoefficient(size_t i) const
return coefficient for x^i
Definition: gf2n.h:132
bool GetBit(size_t n) const
return the n-th bit, n=0 being the least significant bit
Definition: gf2n.h:123
Quotient ring.
Definition: algebra.h:387
Interface for random number generators.
Definition: cryptlib.h:1440
SecBlock<word> typedef.
Definition: secblock.h:1228
#define CRYPTOPP_API
Win32 calling convention.
Definition: config_dll.h:119
#define CRYPTOPP_DLL_TEMPLATE_CLASS
Instantiate templates in a dynamic library.
Definition: config_dll.h:72
word64 word
Full word used for multiprecision integer arithmetic.
Definition: config_int.h:192
const unsigned int WORD_BITS
Size of a platform word in bits.
Definition: config_int.h:260
Abstract base classes that provide a uniform interface to this library.
bool operator>(const ::PolynomialMod2 &a, const ::PolynomialMod2 &b)
compares degree
Definition: gf2n.h:261
bool operator>=(const ::PolynomialMod2 &a, const ::PolynomialMod2 &b)
compares degree
Definition: gf2n.h:264
bool operator<(const ::PolynomialMod2 &a, const ::PolynomialMod2 &b)
compares degree
Definition: gf2n.h:267
bool operator<=(const ::PolynomialMod2 &a, const ::PolynomialMod2 &b)
compares degree
Definition: gf2n.h:270
inline ::Integer operator&(const ::Integer &a, const ::Integer &b)
Bitwise AND.
Definition: integer.h:799
inline ::Integer operator-(const ::Integer &a, const ::Integer &b)
Subtraction.
Definition: integer.h:772
inline ::Integer operator^(const ::Integer &a, const ::Integer &b)
Bitwise XOR.
Definition: integer.h:827
inline ::Integer operator*(const ::Integer &a, const ::Integer &b)
Multiplication.
Definition: integer.h:775
Utility functions for the Crypto++ library.
size_t BitsToBytes(size_t bitCount)
Returns the number of 8-bit bytes or octets required for the specified number of bits.
Definition: misc.h:1143
const T & STDMAX(const T &a, const T &b)
Replacement function for std::max.
Definition: misc.h:668
Crypto++ library namespace.
Classes and functions for secure memory allocations.
void swap(::SecBlock< T, A > &a, ::SecBlock< T, A > &b)
Swap two SecBlocks.
Definition: secblock.h:1289
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:68