Crypto++  8.0
Free C++ class library of cryptographic schemes
strciphr.h
Go to the documentation of this file.
1 // strciphr.h - originally written and placed in the public domain by Wei Dai
2 
3 /// \file strciphr.h
4 /// \brief Classes for implementing stream ciphers
5 /// \details This file contains helper classes for implementing stream ciphers.
6 /// All this infrastructure may look very complex compared to what's in Crypto++ 4.x,
7 /// but stream ciphers implementations now support a lot of new functionality,
8 /// including better performance (minimizing copying), resetting of keys and IVs, and
9 /// methods to query which features are supported by a cipher.
10 /// \details Here's an explanation of these classes. The word "policy" is used here to
11 /// mean a class with a set of methods that must be implemented by individual stream
12 /// cipher implementations. This is usually much simpler than the full stream cipher
13 /// API, which is implemented by either AdditiveCipherTemplate or CFB_CipherTemplate
14 /// using the policy. So for example, an implementation of SEAL only needs to implement
15 /// the AdditiveCipherAbstractPolicy interface (since it's an additive cipher, i.e., it
16 /// xors a keystream into the plaintext). See this line in seal.h:
17 /// <pre>
18 /// typedef SymmetricCipherFinal<ConcretePolicyHolder<SEAL_Policy<B>, AdditiveCipherTemplate<> > > Encryption;
19 /// </pre>
20 /// \details AdditiveCipherTemplate and CFB_CipherTemplate are designed so that they don't
21 /// need to take a policy class as a template parameter (although this is allowed), so
22 /// that their code is not duplicated for each new cipher. Instead they each get a
23 /// reference to an abstract policy interface by calling AccessPolicy() on itself, so
24 /// AccessPolicy() must be overridden to return the actual policy reference. This is done
25 /// by the ConceretePolicyHolder class. Finally, SymmetricCipherFinal implements the
26 /// constructors and other functions that must be implemented by the most derived class.
27 
28 #ifndef CRYPTOPP_STRCIPHR_H
29 #define CRYPTOPP_STRCIPHR_H
30 
31 #include "config.h"
32 
33 #if CRYPTOPP_MSC_VERSION
34 # pragma warning(push)
35 # pragma warning(disable: 4127 4189 4231 4275)
36 #endif
37 
38 #include "cryptlib.h"
39 #include "seckey.h"
40 #include "secblock.h"
41 #include "argnames.h"
42 
43 NAMESPACE_BEGIN(CryptoPP)
44 
45 /// \brief Access a stream cipher policy object
46 /// \tparam POLICY_INTERFACE class implementing AbstractPolicyHolder
47 /// \tparam BASE class or type to use as a base class
48 template <class POLICY_INTERFACE, class BASE = Empty>
49 class CRYPTOPP_NO_VTABLE AbstractPolicyHolder : public BASE
50 {
51 public:
52  typedef POLICY_INTERFACE PolicyInterface;
53  virtual ~AbstractPolicyHolder() {}
54 
55 protected:
56  virtual const POLICY_INTERFACE & GetPolicy() const =0;
57  virtual POLICY_INTERFACE & AccessPolicy() =0;
58 };
59 
60 /// \brief Stream cipher policy object
61 /// \tparam POLICY class implementing AbstractPolicyHolder
62 /// \tparam BASE class or type to use as a base class
63 template <class POLICY, class BASE, class POLICY_INTERFACE = typename BASE::PolicyInterface>
64 class ConcretePolicyHolder : public BASE, protected POLICY
65 {
66 public:
67  virtual ~ConcretePolicyHolder() {}
68 protected:
69  const POLICY_INTERFACE & GetPolicy() const {return *this;}
70  POLICY_INTERFACE & AccessPolicy() {return *this;}
71 };
72 
73 /// \brief Keystream operation flags
74 /// \sa AdditiveCipherAbstractPolicy::GetBytesPerIteration(), AdditiveCipherAbstractPolicy::GetOptimalBlockSize()
75 /// and AdditiveCipherAbstractPolicy::GetAlignment()
77  /// \brief Output buffer is aligned
79  /// \brief Input buffer is aligned
81  /// \brief Input buffer is NULL
83 };
84 
85 /// \brief Keystream operation flags
86 /// \sa AdditiveCipherAbstractPolicy::GetBytesPerIteration(), AdditiveCipherAbstractPolicy::GetOptimalBlockSize()
87 /// and AdditiveCipherAbstractPolicy::GetAlignment()
89  /// \brief Wirte the keystream to the output buffer, input is NULL
91  /// \brief Wirte the keystream to the aligned output buffer, input is NULL
93  /// \brief XOR the input buffer and keystream, write to the output buffer
95  /// \brief XOR the aligned input buffer and keystream, write to the output buffer
97  /// \brief XOR the input buffer and keystream, write to the aligned output buffer
99  /// \brief XOR the aligned input buffer and keystream, write to the aligned output buffer
101 };
102 
103 /// \brief Policy object for additive stream ciphers
104 struct CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AdditiveCipherAbstractPolicy
105 {
106  virtual ~AdditiveCipherAbstractPolicy() {}
107 
108  /// \brief Provides data alignment requirements
109  /// \returns data alignment requirements, in bytes
110  /// \details Internally, the default implementation returns 1. If the stream cipher is implemented
111  /// using an SSE2 ASM or intrinsics, then the value returned is usually 16.
112  virtual unsigned int GetAlignment() const {return 1;}
113 
114  /// \brief Provides number of bytes operated upon during an iteration
115  /// \returns bytes operated upon during an iteration, in bytes
116  /// \sa GetOptimalBlockSize()
117  virtual unsigned int GetBytesPerIteration() const =0;
118 
119  /// \brief Provides number of ideal bytes to process
120  /// \returns the ideal number of bytes to process
121  /// \details Internally, the default implementation returns GetBytesPerIteration()
122  /// \sa GetBytesPerIteration()
123  virtual unsigned int GetOptimalBlockSize() const {return GetBytesPerIteration();}
124 
125  /// \brief Provides buffer size based on iterations
126  /// \returns the buffer size based on iterations, in bytes
127  virtual unsigned int GetIterationsToBuffer() const =0;
128 
129  /// \brief Generate the keystream
130  /// \param keystream the key stream
131  /// \param iterationCount the number of iterations to generate the key stream
132  /// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream()
133  virtual void WriteKeystream(byte *keystream, size_t iterationCount)
134  {OperateKeystream(KeystreamOperation(INPUT_NULL | static_cast<KeystreamOperationFlags>(IsAlignedOn(keystream, GetAlignment()))), keystream, NULLPTR, iterationCount);}
135 
136  /// \brief Flag indicating
137  /// \returns true if the stream can be generated independent of the transformation input, false otherwise
138  /// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream()
139  virtual bool CanOperateKeystream() const {return false;}
140 
141  /// \brief Operates the keystream
142  /// \param operation the operation with additional flags
143  /// \param output the output buffer
144  /// \param input the input buffer
145  /// \param iterationCount the number of iterations to perform on the input
146  /// \details OperateKeystream() will attempt to operate upon GetOptimalBlockSize() buffer,
147  /// which will be derived from GetBytesPerIteration().
148  /// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream(), KeystreamOperation()
149  virtual void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
150  {CRYPTOPP_UNUSED(operation); CRYPTOPP_UNUSED(output); CRYPTOPP_UNUSED(input);
151  CRYPTOPP_UNUSED(iterationCount); CRYPTOPP_ASSERT(false);}
152 
153  /// \brief Key the cipher
154  /// \param params set of NameValuePairs use to initialize this object
155  /// \param key a byte array used to key the cipher
156  /// \param length the size of the key array
157  virtual void CipherSetKey(const NameValuePairs &params, const byte *key, size_t length) =0;
158 
159  /// \brief Resynchronize the cipher
160  /// \param keystreamBuffer the keystream buffer
161  /// \param iv a byte array used to resynchronize the cipher
162  /// \param length the size of the IV array
163  virtual void CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
164  {CRYPTOPP_UNUSED(keystreamBuffer); CRYPTOPP_UNUSED(iv); CRYPTOPP_UNUSED(length);
165  throw NotImplemented("SimpleKeyingInterface: this object doesn't support resynchronization");}
166 
167  /// \brief Flag indicating random access
168  /// \returns true if the cipher is seekable, false otherwise
169  /// \sa SeekToIteration()
170  virtual bool CipherIsRandomAccess() const =0;
171 
172  /// \brief Seeks to a random position in the stream
173  /// \sa CipherIsRandomAccess()
174  virtual void SeekToIteration(lword iterationCount)
175  {CRYPTOPP_UNUSED(iterationCount); CRYPTOPP_ASSERT(!CipherIsRandomAccess());
176  throw NotImplemented("StreamTransformation: this object doesn't support random access");}
177 
178  /// \brief Retrieve the provider of this algorithm
179  /// \return the algorithm provider
180  /// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
181  /// "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
182  /// usually indicate a specialized implementation using instructions from a higher
183  /// instruction set architecture (ISA). Future labels may include external hardware
184  /// like a hardware security module (HSM).
185  /// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
186  /// Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
187  /// instead of ASM.
188  /// \details Algorithms which combine different instructions or ISAs provide the
189  /// dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
190  /// "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
191  /// \note Provider is not universally implemented yet.
192  virtual std::string AlgorithmProvider() const { return "C++"; }
193 };
194 
195 /// \brief Base class for additive stream ciphers
196 /// \tparam WT word type
197 /// \tparam W count of words
198 /// \tparam X bytes per iteration count
199 /// \tparam BASE AdditiveCipherAbstractPolicy derived base class
200 template <typename WT, unsigned int W, unsigned int X = 1, class BASE = AdditiveCipherAbstractPolicy>
201 struct CRYPTOPP_NO_VTABLE AdditiveCipherConcretePolicy : public BASE
202 {
203  /// \brief Word type for the cipher
204  typedef WT WordType;
205 
206  /// \brief Number of bytes for an iteration
207  /// \details BYTES_PER_ITERATION is the product <tt>sizeof(WordType) * W</tt>.
208  /// For example, ChaCha uses 16 each <tt>word32</tt>, and the value of
209  /// BYTES_PER_ITERATION is 64. Each invocation of the ChaCha block function
210  /// produces 64 bytes of keystream.
211  CRYPTOPP_CONSTANT(BYTES_PER_ITERATION = sizeof(WordType) * W)
212 
213  virtual ~AdditiveCipherConcretePolicy() {}
214 
215 #if !(CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64)
216  /// \brief Provides data alignment requirements
217  /// \returns data alignment requirements, in bytes
218  /// \details Internally, the default implementation returns 1. If the stream
219  /// cipher is implemented using an SSE2 ASM or intrinsics, then the value
220  /// returned is usually 16.
221  unsigned int GetAlignment() const {return GetAlignmentOf<WordType>();}
222 #endif
223 
224  /// \brief Provides number of bytes operated upon during an iteration
225  /// \returns bytes operated upon during an iteration, in bytes
226  /// \sa GetOptimalBlockSize()
227  unsigned int GetBytesPerIteration() const {return BYTES_PER_ITERATION;}
228 
229  /// \brief Provides buffer size based on iterations
230  /// \returns the buffer size based on iterations, in bytes
231  unsigned int GetIterationsToBuffer() const {return X;}
232 
233  /// \brief Flag indicating
234  /// \returns true if the stream can be generated independent of the
235  /// transformation input, false otherwise
236  /// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream()
237  bool CanOperateKeystream() const {return true;}
238 
239  /// \brief Operates the keystream
240  /// \param operation the operation with additional flags
241  /// \param output the output buffer
242  /// \param input the input buffer
243  /// \param iterationCount the number of iterations to perform on the input
244  /// \details OperateKeystream() will attempt to operate upon GetOptimalBlockSize() buffer,
245  /// which will be derived from GetBytesPerIteration().
246  /// \sa CanOperateKeystream(), OperateKeystream(), WriteKeystream(), KeystreamOperation()
247  virtual void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount) =0;
248 };
249 
250 /// \brief Helper macro to implement OperateKeystream
251 /// \param x KeystreamOperation mask
252 /// \param b Endian order
253 /// \param i index in output buffer
254 /// \param a value to output
255 #define CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, b, i, a) \
256  PutWord(bool(x & OUTPUT_ALIGNED), b, output+i*sizeof(WordType), (x & INPUT_NULL) ? (a) : (a) ^ GetWord<WordType>(bool(x & INPUT_ALIGNED), b, input+i*sizeof(WordType)));
257 
258 /// \brief Helper macro to implement OperateKeystream
259 /// \param x KeystreamOperation mask
260 /// \param i index in output buffer
261 /// \param a value to output
262 #define CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, i, a) {\
263  __m128i t = (x & INPUT_NULL) ? a : _mm_xor_si128(a, (x & INPUT_ALIGNED) ? _mm_load_si128((__m128i *)input+i) : _mm_loadu_si128((__m128i *)input+i));\
264  if (x & OUTPUT_ALIGNED) _mm_store_si128((__m128i *)output+i, t);\
265  else _mm_storeu_si128((__m128i *)output+i, t);}
266 
267 /// \brief Helper macro to implement OperateKeystream
268 #define CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(x, y) \
269  switch (operation) \
270  { \
271  case WRITE_KEYSTREAM: \
272  x(WRITE_KEYSTREAM) \
273  break; \
274  case XOR_KEYSTREAM: \
275  x(XOR_KEYSTREAM) \
276  input += y; \
277  break; \
278  case XOR_KEYSTREAM_INPUT_ALIGNED: \
279  x(XOR_KEYSTREAM_INPUT_ALIGNED) \
280  input += y; \
281  break; \
282  case XOR_KEYSTREAM_OUTPUT_ALIGNED: \
283  x(XOR_KEYSTREAM_OUTPUT_ALIGNED) \
284  input += y; \
285  break; \
286  case WRITE_KEYSTREAM_ALIGNED: \
287  x(WRITE_KEYSTREAM_ALIGNED) \
288  break; \
289  case XOR_KEYSTREAM_BOTH_ALIGNED: \
290  x(XOR_KEYSTREAM_BOTH_ALIGNED) \
291  input += y; \
292  break; \
293  } \
294  output += y;
295 
296 /// \brief Base class for additive stream ciphers with SymmetricCipher interface
297 /// \tparam BASE AbstractPolicyHolder base class
298 template <class BASE = AbstractPolicyHolder<AdditiveCipherAbstractPolicy, SymmetricCipher> >
299 class CRYPTOPP_NO_VTABLE AdditiveCipherTemplate : public BASE, public RandomNumberGenerator
300 {
301 public:
302  virtual ~AdditiveCipherTemplate() {}
303  AdditiveCipherTemplate() : m_leftOver(0) {}
304 
305  /// \brief Generate random array of bytes
306  /// \param output the byte buffer
307  /// \param size the length of the buffer, in bytes
308  /// \details All generated values are uniformly distributed over the range specified
309  /// within the constraints of a particular generator.
310  void GenerateBlock(byte *output, size_t size);
311 
312  /// \brief Apply keystream to data
313  /// \param outString a buffer to write the transformed data
314  /// \param inString a buffer to read the data
315  /// \param length the size fo the buffers, in bytes
316  /// \details This is the primary method to operate a stream cipher. For example:
317  /// <pre>
318  /// size_t size = 30;
319  /// byte plain[size] = "Do or do not; there is no try";
320  /// byte cipher[size];
321  /// ...
322  /// ChaCha20 chacha(key, keySize);
323  /// chacha.ProcessData(cipher, plain, size);
324  /// </pre>
325  void ProcessData(byte *outString, const byte *inString, size_t length);
326 
327  /// \brief Resynchronize the cipher
328  /// \param iv a byte array used to resynchronize the cipher
329  /// \param length the size of the IV array
330  void Resynchronize(const byte *iv, int length=-1);
331 
332  /// \brief Provides number of ideal bytes to process
333  /// \returns the ideal number of bytes to process
334  /// \details Internally, the default implementation returns GetBytesPerIteration()
335  /// \sa GetBytesPerIteration() and GetOptimalNextBlockSize()
336  unsigned int OptimalBlockSize() const {return this->GetPolicy().GetOptimalBlockSize();}
337 
338  /// \brief Provides number of ideal bytes to process
339  /// \returns the ideal number of bytes to process
340  /// \details Internally, the default implementation returns remaining unprocessed bytes
341  /// \sa GetBytesPerIteration() and OptimalBlockSize()
342  unsigned int GetOptimalNextBlockSize() const {return (unsigned int)this->m_leftOver;}
343 
344  /// \brief Provides number of ideal data alignment
345  /// \returns the ideal data alignment, in bytes
346  /// \sa GetAlignment() and OptimalBlockSize()
347  unsigned int OptimalDataAlignment() const {return this->GetPolicy().GetAlignment();}
348 
349  /// \brief Determines if the cipher is self inverting
350  /// \returns true if the stream cipher is self inverting, false otherwise
351  bool IsSelfInverting() const {return true;}
352 
353  /// \brief Determines if the cipher is a forward transformation
354  /// \returns true if the stream cipher is a forward transformation, false otherwise
355  bool IsForwardTransformation() const {return true;}
356 
357  /// \brief Flag indicating random access
358  /// \returns true if the cipher is seekable, false otherwise
359  /// \sa Seek()
360  bool IsRandomAccess() const {return this->GetPolicy().CipherIsRandomAccess();}
361 
362  /// \brief Seeks to a random position in the stream
363  /// \param position the absolute position in the stream
364  /// \sa IsRandomAccess()
365  void Seek(lword position);
366 
367  /// \brief Retrieve the provider of this algorithm
368  /// \return the algorithm provider
369  /// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
370  /// "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
371  /// usually indicate a specialized implementation using instructions from a higher
372  /// instruction set architecture (ISA). Future labels may include external hardware
373  /// like a hardware security module (HSM).
374  /// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
375  /// Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
376  /// instead of ASM.
377  /// \details Algorithms which combine different instructions or ISAs provide the
378  /// dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
379  /// "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
380  /// \note Provider is not universally implemented yet.
381  std::string AlgorithmProvider() const { return this->GetPolicy().AlgorithmProvider(); }
382 
383  typedef typename BASE::PolicyInterface PolicyInterface;
384 
385 protected:
386  void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &params);
387 
388  unsigned int GetBufferByteSize(const PolicyInterface &policy) const {return policy.GetBytesPerIteration() * policy.GetIterationsToBuffer();}
389 
390  inline byte * KeystreamBufferBegin() {return this->m_buffer.data();}
391  inline byte * KeystreamBufferEnd() {return (PtrAdd(this->m_buffer.data(), this->m_buffer.size()));}
392 
393  AlignedSecByteBlock m_buffer;
394  size_t m_leftOver;
395 };
396 
397 /// \brief Policy object for feeback based stream ciphers
398 class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CFB_CipherAbstractPolicy
399 {
400 public:
401  virtual ~CFB_CipherAbstractPolicy() {}
402 
403  /// \brief Provides data alignment requirements
404  /// \returns data alignment requirements, in bytes
405  /// \details Internally, the default implementation returns 1. If the stream cipher is implemented
406  /// using an SSE2 ASM or intrinsics, then the value returned is usually 16.
407  virtual unsigned int GetAlignment() const =0;
408 
409  /// \brief Provides number of bytes operated upon during an iteration
410  /// \returns bytes operated upon during an iteration, in bytes
411  /// \sa GetOptimalBlockSize()
412  virtual unsigned int GetBytesPerIteration() const =0;
413 
414  /// \brief Access the feedback register
415  /// \returns pointer to the first byte of the feedback register
416  virtual byte * GetRegisterBegin() =0;
417 
418  /// \brief TODO
419  virtual void TransformRegister() =0;
420 
421  /// \brief Flag indicating iteration support
422  /// \returns true if the cipher supports iteration, false otherwise
423  virtual bool CanIterate() const {return false;}
424 
425  /// \brief Iterate the cipher
426  /// \param output the output buffer
427  /// \param input the input buffer
428  /// \param dir the direction of the cipher
429  /// \param iterationCount the number of iterations to perform on the input
430  /// \sa IsSelfInverting() and IsForwardTransformation()
431  virtual void Iterate(byte *output, const byte *input, CipherDir dir, size_t iterationCount)
432  {CRYPTOPP_UNUSED(output); CRYPTOPP_UNUSED(input); CRYPTOPP_UNUSED(dir);
433  CRYPTOPP_UNUSED(iterationCount); CRYPTOPP_ASSERT(false);
434  throw Exception(Exception::OTHER_ERROR, "SimpleKeyingInterface: unexpected error");}
435 
436  /// \brief Key the cipher
437  /// \param params set of NameValuePairs use to initialize this object
438  /// \param key a byte array used to key the cipher
439  /// \param length the size of the key array
440  virtual void CipherSetKey(const NameValuePairs &params, const byte *key, size_t length) =0;
441 
442  /// \brief Resynchronize the cipher
443  /// \param iv a byte array used to resynchronize the cipher
444  /// \param length the size of the IV array
445  virtual void CipherResynchronize(const byte *iv, size_t length)
446  {CRYPTOPP_UNUSED(iv); CRYPTOPP_UNUSED(length);
447  throw NotImplemented("SimpleKeyingInterface: this object doesn't support resynchronization");}
448 
449  /// \brief Retrieve the provider of this algorithm
450  /// \return the algorithm provider
451  /// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
452  /// "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
453  /// usually indicate a specialized implementation using instructions from a higher
454  /// instruction set architecture (ISA). Future labels may include external hardware
455  /// like a hardware security module (HSM).
456  /// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
457  /// Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
458  /// instead of ASM.
459  /// \details Algorithms which combine different instructions or ISAs provide the
460  /// dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
461  /// "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
462  /// \note Provider is not universally implemented yet.
463  virtual std::string AlgorithmProvider() const { return "C++"; }
464 };
465 
466 /// \brief Base class for feedback based stream ciphers
467 /// \tparam WT word type
468 /// \tparam W count of words
469 /// \tparam BASE CFB_CipherAbstractPolicy derived base class
470 template <typename WT, unsigned int W, class BASE = CFB_CipherAbstractPolicy>
471 struct CRYPTOPP_NO_VTABLE CFB_CipherConcretePolicy : public BASE
472 {
473  typedef WT WordType;
474 
475  virtual ~CFB_CipherConcretePolicy() {}
476 
477  /// \brief Provides data alignment requirements
478  /// \returns data alignment requirements, in bytes
479  /// \details Internally, the default implementation returns 1. If the stream cipher is implemented
480  /// using an SSE2 ASM or intrinsics, then the value returned is usually 16.
481  unsigned int GetAlignment() const {return sizeof(WordType);}
482 
483  /// \brief Provides number of bytes operated upon during an iteration
484  /// \returns bytes operated upon during an iteration, in bytes
485  /// \sa GetOptimalBlockSize()
486  unsigned int GetBytesPerIteration() const {return sizeof(WordType) * W;}
487 
488  /// \brief Flag indicating iteration support
489  /// \returns true if the cipher supports iteration, false otherwise
490  bool CanIterate() const {return true;}
491 
492  /// \brief Perform one iteration in the forward direction
493  void TransformRegister() {this->Iterate(NULLPTR, NULLPTR, ENCRYPTION, 1);}
494 
495  /// \brief Provides alternate access to a feedback register
496  /// \tparam B enumeration indicating endianness
497  /// \details RegisterOutput() provides alternate access to the feedback register. The
498  /// enumeration B is BigEndian or LittleEndian. Repeatedly applying operator()
499  /// results in advancing in the register.
500  template <class B>
502  {
503  RegisterOutput(byte *output, const byte *input, CipherDir dir)
504  : m_output(output), m_input(input), m_dir(dir) {}
505 
506  /// \brief XOR feedback register with data
507  /// \param registerWord data represented as a word type
508  /// \returns reference to the next feedback register word
509  inline RegisterOutput& operator()(WordType &registerWord)
510  {
511  //CRYPTOPP_ASSERT(IsAligned<WordType>(m_output));
512  //CRYPTOPP_ASSERT(IsAligned<WordType>(m_input));
513 
514  if (!NativeByteOrderIs(B::ToEnum()))
515  registerWord = ByteReverse(registerWord);
516 
517  if (m_dir == ENCRYPTION)
518  {
519  if (m_input == NULLPTR)
520  {
521  CRYPTOPP_ASSERT(m_output == NULLPTR);
522  }
523  else
524  {
525  // WordType ct = *(const WordType *)m_input ^ registerWord;
526  WordType ct = GetWord<WordType>(false, NativeByteOrder::ToEnum(), m_input) ^ registerWord;
527  registerWord = ct;
528 
529  // *(WordType*)m_output = ct;
530  PutWord<WordType>(false, NativeByteOrder::ToEnum(), m_output, ct);
531 
532  m_input += sizeof(WordType);
533  m_output += sizeof(WordType);
534  }
535  }
536  else
537  {
538  // WordType ct = *(const WordType *)m_input;
539  WordType ct = GetWord<WordType>(false, NativeByteOrder::ToEnum(), m_input);
540 
541  // *(WordType*)m_output = registerWord ^ ct;
542  PutWord<WordType>(false, NativeByteOrder::ToEnum(), m_output, registerWord ^ ct);
543  registerWord = ct;
544 
545  m_input += sizeof(WordType);
546  m_output += sizeof(WordType);
547  }
548 
549  // registerWord is left unreversed so it can be xor-ed with further input
550 
551  return *this;
552  }
553 
554  byte *m_output;
555  const byte *m_input;
556  CipherDir m_dir;
557  };
558 };
559 
560 /// \brief Base class for feedback based stream ciphers with SymmetricCipher interface
561 /// \tparam BASE AbstractPolicyHolder base class
562 template <class BASE>
563 class CRYPTOPP_NO_VTABLE CFB_CipherTemplate : public BASE
564 {
565 public:
566  virtual ~CFB_CipherTemplate() {}
567  CFB_CipherTemplate() : m_leftOver(0) {}
568 
569  /// \brief Apply keystream to data
570  /// \param outString a buffer to write the transformed data
571  /// \param inString a buffer to read the data
572  /// \param length the size fo the buffers, in bytes
573  /// \details This is the primary method to operate a stream cipher. For example:
574  /// <pre>
575  /// size_t size = 30;
576  /// byte plain[size] = "Do or do not; there is no try";
577  /// byte cipher[size];
578  /// ...
579  /// ChaCha20 chacha(key, keySize);
580  /// chacha.ProcessData(cipher, plain, size);
581  /// </pre>
582  void ProcessData(byte *outString, const byte *inString, size_t length);
583 
584  /// \brief Resynchronize the cipher
585  /// \param iv a byte array used to resynchronize the cipher
586  /// \param length the size of the IV array
587  void Resynchronize(const byte *iv, int length=-1);
588 
589  /// \brief Provides number of ideal bytes to process
590  /// \returns the ideal number of bytes to process
591  /// \details Internally, the default implementation returns GetBytesPerIteration()
592  /// \sa GetBytesPerIteration() and GetOptimalNextBlockSize()
593  unsigned int OptimalBlockSize() const {return this->GetPolicy().GetBytesPerIteration();}
594 
595  /// \brief Provides number of ideal bytes to process
596  /// \returns the ideal number of bytes to process
597  /// \details Internally, the default implementation returns remaining unprocessed bytes
598  /// \sa GetBytesPerIteration() and OptimalBlockSize()
599  unsigned int GetOptimalNextBlockSize() const {return (unsigned int)m_leftOver;}
600 
601  /// \brief Provides number of ideal data alignment
602  /// \returns the ideal data alignment, in bytes
603  /// \sa GetAlignment() and OptimalBlockSize()
604  unsigned int OptimalDataAlignment() const {return this->GetPolicy().GetAlignment();}
605 
606  /// \brief Flag indicating random access
607  /// \returns true if the cipher is seekable, false otherwise
608  /// \sa Seek()
609  bool IsRandomAccess() const {return false;}
610 
611  /// \brief Determines if the cipher is self inverting
612  /// \returns true if the stream cipher is self inverting, false otherwise
613  bool IsSelfInverting() const {return false;}
614 
615  /// \brief Retrieve the provider of this algorithm
616  /// \return the algorithm provider
617  /// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
618  /// "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
619  /// usually indicate a specialized implementation using instructions from a higher
620  /// instruction set architecture (ISA). Future labels may include external hardware
621  /// like a hardware security module (HSM).
622  /// \details Generally speaking Wei Dai's original IA-32 ASM code falls under "SSE2".
623  /// Labels like "SSSE3" and "SSE4.1" follow after Wei's code and use intrinsics
624  /// instead of ASM.
625  /// \details Algorithms which combine different instructions or ISAs provide the
626  /// dominant one. For example on x86 <tt>AES/GCM</tt> returns "AESNI" rather than
627  /// "CLMUL" or "AES+SSE4.1" or "AES+CLMUL" or "AES+SSE4.1+CLMUL".
628  /// \note Provider is not universally implemented yet.
629  std::string AlgorithmProvider() const { return this->GetPolicy().AlgorithmProvider(); }
630 
631  typedef typename BASE::PolicyInterface PolicyInterface;
632 
633 protected:
634  virtual void CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length) =0;
635 
636  void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &params);
637 
638  size_t m_leftOver;
639 };
640 
641 /// \brief Base class for feedback based stream ciphers in the forward direction with SymmetricCipher interface
642 /// \tparam BASE AbstractPolicyHolder base class
643 template <class BASE = AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >
644 class CRYPTOPP_NO_VTABLE CFB_EncryptionTemplate : public CFB_CipherTemplate<BASE>
645 {
646  bool IsForwardTransformation() const {return true;}
647  void CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length);
648 };
649 
650 /// \brief Base class for feedback based stream ciphers in the reverse direction with SymmetricCipher interface
651 /// \tparam BASE AbstractPolicyHolder base class
652 template <class BASE = AbstractPolicyHolder<CFB_CipherAbstractPolicy, SymmetricCipher> >
653 class CRYPTOPP_NO_VTABLE CFB_DecryptionTemplate : public CFB_CipherTemplate<BASE>
654 {
655  bool IsForwardTransformation() const {return false;}
656  void CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length);
657 };
658 
659 /// \brief Base class for feedback based stream ciphers with a mandatory block size
660 /// \tparam BASE CFB_EncryptionTemplate or CFB_DecryptionTemplate base class
661 template <class BASE>
662 class CFB_RequireFullDataBlocks : public BASE
663 {
664 public:
665  unsigned int MandatoryBlockSize() const {return this->OptimalBlockSize();}
666 };
667 
668 /// \brief SymmetricCipher implementation
669 /// \tparam BASE AbstractPolicyHolder derived base class
670 /// \tparam INFO AbstractPolicyHolder derived information class
671 /// \sa Weak::ARC4, ChaCha8, ChaCha12, ChaCha20, Salsa20, SEAL, Sosemanuk, WAKE
672 template <class BASE, class INFO = BASE>
673 class SymmetricCipherFinal : public AlgorithmImpl<SimpleKeyingInterfaceImpl<BASE, INFO>, INFO>
674 {
675 public:
676  virtual ~SymmetricCipherFinal() {}
677 
678  /// \brief Construct a stream cipher
680 
681  /// \brief Construct a stream cipher
682  /// \param key a byte array used to key the cipher
683  /// \details This overload uses DEFAULT_KEYLENGTH
684  SymmetricCipherFinal(const byte *key)
685  {this->SetKey(key, this->DEFAULT_KEYLENGTH);}
686 
687  /// \brief Construct a stream cipher
688  /// \param key a byte array used to key the cipher
689  /// \param length the size of the key array
690  SymmetricCipherFinal(const byte *key, size_t length)
691  {this->SetKey(key, length);}
692 
693  /// \brief Construct a stream cipher
694  /// \param key a byte array used to key the cipher
695  /// \param length the size of the key array
696  /// \param iv a byte array used as an initialization vector
697  SymmetricCipherFinal(const byte *key, size_t length, const byte *iv)
698  {this->SetKeyWithIV(key, length, iv);}
699 
700  /// \brief Clone a SymmetricCipher
701  /// \returns a new SymmetricCipher based on this object
702  Clonable * Clone() const {return static_cast<SymmetricCipher *>(new SymmetricCipherFinal<BASE, INFO>(*this));}
703 };
704 
705 NAMESPACE_END
706 
707 #ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
708 #include "strciphr.cpp"
709 #endif
710 
711 NAMESPACE_BEGIN(CryptoPP)
717 
718 NAMESPACE_END
719 
720 #if CRYPTOPP_MSC_VERSION
721 # pragma warning(pop)
722 #endif
723 
724 #endif
Base class for all exceptions thrown by the library.
Definition: cryptlib.h:158
unsigned int GetOptimalNextBlockSize() const
Provides number of ideal bytes to process.
Definition: strciphr.h:599
Standard names for retrieving values by name when working with NameValuePairs.
bool CanOperateKeystream() const
Flag indicating.
Definition: strciphr.h:237
bool NativeByteOrderIs(ByteOrder order)
Determines whether order follows native byte ordering.
Definition: misc.h:1156
Output buffer is aligned.
Definition: strciphr.h:78
std::string AlgorithmProvider() const
Retrieve the provider of this algorithm.
Definition: strciphr.h:381
SymmetricCipherFinal(const byte *key)
Construct a stream cipher.
Definition: strciphr.h:684
unsigned int OptimalBlockSize() const
Provides number of ideal bytes to process.
Definition: strciphr.h:336
Input buffer is aligned.
Definition: strciphr.h:80
virtual void GenerateBlock(byte *output, size_t size)
Generate random array of bytes.
Definition: cryptlib.cpp:311
bool IsRandomAccess() const
Flag indicating random access.
Definition: strciphr.h:609
Base class for feedback based stream ciphers.
Definition: strciphr.h:471
Base class for additive stream ciphers.
Definition: strciphr.h:201
virtual void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
Operates the keystream.
Definition: strciphr.h:149
unsigned int GetOptimalNextBlockSize() const
Provides number of ideal bytes to process.
Definition: strciphr.h:342
XOR the input buffer and keystream, write to the aligned output buffer.
Definition: strciphr.h:98
unsigned int GetBytesPerIteration() const
Provides number of bytes operated upon during an iteration.
Definition: strciphr.h:486
XOR the input buffer and keystream, write to the output buffer.
Definition: strciphr.h:94
CipherDir
Specifies a direction for a cipher to operate.
Definition: cryptlib.h:123
Abstract base classes that provide a uniform interface to this library.
Base class for feedback based stream ciphers with SymmetricCipher interface.
Definition: strciphr.h:563
unsigned int OptimalDataAlignment() const
Provides number of ideal data alignment.
Definition: strciphr.h:347
Some other error occurred not belonging to other categories.
Definition: cryptlib.h:177
Library configuration file.
virtual unsigned int GetOptimalBlockSize() const
Provides number of ideal bytes to process.
Definition: strciphr.h:123
Interface for random number generators.
Definition: cryptlib.h:1383
unsigned int GetAlignment() const
Provides data alignment requirements.
Definition: strciphr.h:221
Wirte the keystream to the output buffer, input is NULL.
Definition: strciphr.h:90
Stream cipher policy object.
Definition: strciphr.h:64
virtual bool CanOperateKeystream() const
Flag indicating.
Definition: strciphr.h:139
Interface for cloning objects.
Definition: cryptlib.h:556
virtual void WriteKeystream(byte *keystream, size_t iterationCount)
Generate the keystream.
Definition: strciphr.h:133
Policy object for additive stream ciphers.
Definition: strciphr.h:104
the cipher is performing encryption
Definition: cryptlib.h:125
Classes and functions for secure memory allocations.
void TransformRegister()
Perform one iteration in the forward direction.
Definition: strciphr.h:493
bool IsAlignedOn(const void *ptr, unsigned int alignment)
Determines whether ptr is aligned to a minimum value.
Definition: misc.h:1111
Input buffer is NULL.
Definition: strciphr.h:82
Base class for feedback based stream ciphers in the reverse direction with SymmetricCipher interface...
Definition: strciphr.h:653
bool IsSelfInverting() const
Determines if the cipher is self inverting.
Definition: strciphr.h:351
Provides alternate access to a feedback register.
Definition: strciphr.h:501
unsigned int GetBytesPerIteration() const
Provides number of bytes operated upon during an iteration.
Definition: strciphr.h:227
A method was called which was not implemented.
Definition: cryptlib.h:223
virtual unsigned int GetAlignment() const
Provides data alignment requirements.
Definition: strciphr.h:112
bool CanIterate() const
Flag indicating iteration support.
Definition: strciphr.h:490
RegisterOutput & operator()(WordType &registerWord)
XOR feedback register with data.
Definition: strciphr.h:509
Classes and functions for implementing secret key algorithms.
virtual std::string AlgorithmProvider() const
Retrieve the provider of this algorithm.
Definition: strciphr.h:463
virtual void SeekToIteration(lword iterationCount)
Seeks to a random position in the stream.
Definition: strciphr.h:174
unsigned int OptimalBlockSize() const
Provides number of ideal bytes to process.
Definition: strciphr.h:593
Interface for one direction (encryption or decryption) of a stream cipher or cipher mode...
Definition: cryptlib.h:1258
Base class for feedback based stream ciphers with a mandatory block size.
Definition: strciphr.h:662
Policy object for feeback based stream ciphers.
Definition: strciphr.h:398
std::string AlgorithmProvider() const
Retrieve the provider of this algorithm.
Definition: strciphr.h:629
SecBlock using AllocatorWithCleanup<byte, true> typedef.
Definition: secblock.h:1062
Base class for feedback based stream ciphers in the forward direction with SymmetricCipher interface...
Definition: strciphr.h:644
SymmetricCipherFinal()
Construct a stream cipher.
Definition: strciphr.h:679
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:69
bool IsSelfInverting() const
Determines if the cipher is self inverting.
Definition: strciphr.h:613
bool IsRandomAccess() const
Flag indicating random access.
Definition: strciphr.h:360
PTR PtrAdd(PTR pointer, OFF offset)
Create a pointer with an offset.
Definition: misc.h:343
unsigned int OptimalDataAlignment() const
Provides number of ideal data alignment.
Definition: strciphr.h:604
XOR the aligned input buffer and keystream, write to the aligned output buffer.
Definition: strciphr.h:100
virtual bool CanIterate() const
Flag indicating iteration support.
Definition: strciphr.h:423
SymmetricCipherFinal(const byte *key, size_t length, const byte *iv)
Construct a stream cipher.
Definition: strciphr.h:697
Clonable * Clone() const
Clone a SymmetricCipher.
Definition: strciphr.h:702
virtual void CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
Resynchronize the cipher.
Definition: strciphr.h:163
virtual void Iterate(byte *output, const byte *input, CipherDir dir, size_t iterationCount)
Iterate the cipher.
Definition: strciphr.h:431
unsigned int GetAlignment() const
Provides data alignment requirements.
Definition: strciphr.h:481
KeystreamOperation
Keystream operation flags.
Definition: strciphr.h:88
SymmetricCipherFinal(const byte *key, size_t length)
Construct a stream cipher.
Definition: strciphr.h:690
virtual std::string AlgorithmProvider() const
Retrieve the provider of this algorithm.
Definition: strciphr.h:192
virtual void CipherResynchronize(const byte *iv, size_t length)
Resynchronize the cipher.
Definition: strciphr.h:445
Crypto++ library namespace.
WT WordType
Word type for the cipher.
Definition: strciphr.h:204
bool IsForwardTransformation() const
Determines if the cipher is a forward transformation.
Definition: strciphr.h:355
SymmetricCipher implementation.
Definition: strciphr.h:673
Wirte the keystream to the aligned output buffer, input is NULL.
Definition: strciphr.h:92
unsigned int GetIterationsToBuffer() const
Provides buffer size based on iterations.
Definition: strciphr.h:231
byte ByteReverse(byte value)
Reverses bytes in a 8-bit value.
Definition: misc.h:1940
Base class for additive stream ciphers with SymmetricCipher interface.
Definition: strciphr.h:299
Access a stream cipher policy object.
Definition: strciphr.h:49
XOR the aligned input buffer and keystream, write to the output buffer.
Definition: strciphr.h:96
KeystreamOperationFlags
Keystream operation flags.
Definition: strciphr.h:76
Interface for retrieving values given their names.
Definition: cryptlib.h:293
Base class information.
Definition: simple.h:36