Crypto++  8.0
Free C++ class library of cryptographic schemes
gfpcrypt.cpp
1 // dsa.cpp - originally written and placed in the public domain by Wei Dai
2 
3 #include "pch.h"
4 #include "config.h"
5 
6 // TODO: fix the C4589 warnings
7 #if CRYPTOPP_MSC_VERSION
8 # pragma warning(disable: 4189 4589)
9 #endif
10 
11 #ifndef CRYPTOPP_IMPORTS
12 
13 #include "gfpcrypt.h"
14 #include "nbtheory.h"
15 #include "modarith.h"
16 #include "integer.h"
17 #include "asn.h"
18 #include "oids.h"
19 #include "misc.h"
20 
21 NAMESPACE_BEGIN(CryptoPP)
22 
23 #if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING)
24 void TestInstantiations_gfpcrypt()
25 {
26  GDSA<SHA1>::Signer test;
28  DSA::Signer test5(NullRNG(), 100);
29  DSA::Signer test2(test5);
30  NR<SHA1>::Signer test3;
31  NR<SHA1>::Verifier test4;
32  DLIES<>::Encryptor test6;
33  DLIES<>::Decryptor test7;
34 }
35 #endif
36 
38 {
39  Integer p, q, g;
40 
41  if (alg.GetValue("Modulus", p) && alg.GetValue("SubgroupGenerator", g))
42  {
43  q = alg.GetValueWithDefault("SubgroupOrder", ComputeGroupOrder(p)/2);
44  Initialize(p, q, g);
45  }
46  else
47  {
48  int modulusSize = 2048, defaultSubgroupOrderSize;
49  alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
50 
51  switch (modulusSize)
52  {
53  case 1024:
54  defaultSubgroupOrderSize = 160;
55  break;
56  case 2048:
57  defaultSubgroupOrderSize = 224;
58  break;
59  case 3072:
60  defaultSubgroupOrderSize = 256;
61  break;
62  default:
63  throw InvalidArgument("DSA: not a valid prime length");
64  }
65 
67  }
68 }
69 
71 {
72  bool pass = DL_GroupParameters_GFP::ValidateGroup(rng, level);
73  CRYPTOPP_ASSERT(pass);
74 
75  const int pSize = GetModulus().BitCount(), qSize = GetSubgroupOrder().BitCount();
76  pass = pass && ((pSize==1024 && qSize==160) || (pSize==2048 && qSize==224) || (pSize==2048 && qSize==256) || (pSize==3072 && qSize==256));
77  CRYPTOPP_ASSERT(pass);
78 
79  return pass;
80 }
81 
82 void DL_SignatureMessageEncodingMethod_DSA::ComputeMessageRepresentative(RandomNumberGenerator &rng,
83  const byte *recoverableMessage, size_t recoverableMessageLength,
84  HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
85  byte *representative, size_t representativeBitLength) const
86 {
87  CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(recoverableMessage), CRYPTOPP_UNUSED(recoverableMessageLength);
88  CRYPTOPP_UNUSED(messageEmpty), CRYPTOPP_UNUSED(hashIdentifier);
89  CRYPTOPP_ASSERT(recoverableMessageLength == 0);
90  CRYPTOPP_ASSERT(hashIdentifier.second == 0);
91 
92  const size_t representativeByteLength = BitsToBytes(representativeBitLength);
93  const size_t digestSize = hash.DigestSize();
94  const size_t paddingLength = SaturatingSubtract(representativeByteLength, digestSize);
95 
96  memset(representative, 0, paddingLength);
97  hash.TruncatedFinal(representative+paddingLength, STDMIN(representativeByteLength, digestSize));
98 
99  if (digestSize*8 > representativeBitLength)
100  {
101  Integer h(representative, representativeByteLength);
102  h >>= representativeByteLength*8 - representativeBitLength;
103  h.Encode(representative, representativeByteLength);
104  }
105 }
106 
107 void DL_SignatureMessageEncodingMethod_NR::ComputeMessageRepresentative(RandomNumberGenerator &rng,
108  const byte *recoverableMessage, size_t recoverableMessageLength,
109  HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
110  byte *representative, size_t representativeBitLength) const
111 {
112  CRYPTOPP_UNUSED(rng);CRYPTOPP_UNUSED(recoverableMessage); CRYPTOPP_UNUSED(recoverableMessageLength);
113  CRYPTOPP_UNUSED(hash); CRYPTOPP_UNUSED(hashIdentifier); CRYPTOPP_UNUSED(messageEmpty);
114  CRYPTOPP_UNUSED(representative); CRYPTOPP_UNUSED(representativeBitLength);
115 
116  CRYPTOPP_ASSERT(recoverableMessageLength == 0);
117  CRYPTOPP_ASSERT(hashIdentifier.second == 0);
118  const size_t representativeByteLength = BitsToBytes(representativeBitLength);
119  const size_t digestSize = hash.DigestSize();
120  const size_t paddingLength = SaturatingSubtract(representativeByteLength, digestSize);
121 
122  memset(representative, 0, paddingLength);
123  hash.TruncatedFinal(representative+paddingLength, STDMIN(representativeByteLength, digestSize));
124 
125  if (digestSize*8 >= representativeBitLength)
126  {
127  Integer h(representative, representativeByteLength);
128  h >>= representativeByteLength*8 - representativeBitLength + 1;
129  h.Encode(representative, representativeByteLength);
130  }
131 }
132 
134 {
135  const Integer &p = GetModulus(), &q = GetSubgroupOrder();
136 
137  bool pass = true;
138  pass = pass && p > Integer::One() && p.IsOdd();
139  CRYPTOPP_ASSERT(pass);
140  pass = pass && q > Integer::One() && q.IsOdd();
141  CRYPTOPP_ASSERT(pass);
142 
143  if (level >= 1)
144  {
145  pass = pass && GetCofactor() > Integer::One() && GetGroupOrder() % q == Integer::Zero();
146  CRYPTOPP_ASSERT(pass);
147  }
148  if (level >= 2)
149  {
150  pass = pass && VerifyPrime(rng, q, level-2) && VerifyPrime(rng, p, level-2);
151  CRYPTOPP_ASSERT(pass);
152  }
153 
154  return pass;
155 }
156 
158 {
159  const Integer &p = GetModulus(), &q = GetSubgroupOrder();
160 
161  bool pass = true;
162  pass = pass && GetFieldType() == 1 ? g.IsPositive() : g.NotNegative();
163  CRYPTOPP_ASSERT(pass);
164 
165  pass = pass && g < p && !IsIdentity(g);
166  CRYPTOPP_ASSERT(pass);
167 
168  if (level >= 1)
169  {
170  if (gpc)
171  {
172  pass = pass && gpc->Exponentiate(GetGroupPrecomputation(), Integer::One()) == g;
173  CRYPTOPP_ASSERT(pass);
174  }
175  }
176  if (level >= 2)
177  {
178  if (GetFieldType() == 2)
179  {
180  pass = pass && Jacobi(g*g-4, p)==-1;
181  CRYPTOPP_ASSERT(pass);
182  }
183 
184  // verifying that Lucas((p+1)/2, w, p)==2 is omitted because it's too costly
185  // and at most 1 bit is leaked if it's false
186  bool fullValidate = (GetFieldType() == 2 && level >= 3) || !FastSubgroupCheckAvailable();
187 
188  if (fullValidate && pass)
189  {
190  Integer gp = gpc ? gpc->Exponentiate(GetGroupPrecomputation(), q) : ExponentiateElement(g, q);
191  pass = pass && IsIdentity(gp);
192  CRYPTOPP_ASSERT(pass);
193  }
194  else if (GetFieldType() == 1)
195  {
196  pass = pass && Jacobi(g, p) == 1;
197  CRYPTOPP_ASSERT(pass);
198  }
199  }
200 
201  return pass;
202 }
203 
205 {
206  Integer p, q, g;
207 
208  if (alg.GetValue("Modulus", p) && alg.GetValue("SubgroupGenerator", g))
209  {
210  q = alg.GetValueWithDefault("SubgroupOrder", ComputeGroupOrder(p)/2);
211  }
212  else
213  {
214  int modulusSize, subgroupOrderSize;
215 
216  if (!alg.GetIntValue("ModulusSize", modulusSize))
217  modulusSize = alg.GetIntValueWithDefault("KeySize", 2048);
218 
219  if (!alg.GetIntValue("SubgroupOrderSize", subgroupOrderSize))
220  subgroupOrderSize = GetDefaultSubgroupOrderSize(modulusSize);
221 
223  pg.Generate(GetFieldType() == 1 ? 1 : -1, rng, modulusSize, subgroupOrderSize);
224  p = pg.Prime();
225  q = pg.SubPrime();
226  g = pg.Generator();
227  }
228 
229  Initialize(p, q, g);
230 }
231 
232 void DL_GroupParameters_IntegerBased::EncodeElement(bool reversible, const Element &element, byte *encoded) const
233 {
234  CRYPTOPP_UNUSED(reversible);
235  element.Encode(encoded, GetModulus().ByteCount());
236 }
237 
239 {
240  CRYPTOPP_UNUSED(reversible);
241  return GetModulus().ByteCount();
242 }
243 
244 Integer DL_GroupParameters_IntegerBased::DecodeElement(const byte *encoded, bool checkForGroupMembership) const
245 {
246  CRYPTOPP_UNUSED(checkForGroupMembership);
247  Integer g(encoded, GetModulus().ByteCount());
248  if (!ValidateElement(1, g, NULLPTR))
249  throw DL_BadElement();
250  return g;
251 }
252 
254 {
255  BERSequenceDecoder parameters(bt);
256  Integer p(parameters);
257  Integer q(parameters);
258  Integer g;
259  if (parameters.EndReached())
260  {
261  g = q;
262  q = ComputeGroupOrder(p) / 2;
263  }
264  else
265  g.BERDecode(parameters);
266  parameters.MessageEnd();
267 
268  SetModulusAndSubgroupGenerator(p, g);
269  SetSubgroupOrder(q);
270 }
271 
273 {
274  DERSequenceEncoder parameters(bt);
275  GetModulus().DEREncode(parameters);
276  m_q.DEREncode(parameters);
277  GetSubgroupGenerator().DEREncode(parameters);
278  parameters.MessageEnd();
279 }
280 
281 bool DL_GroupParameters_IntegerBased::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
282 {
283  return GetValueHelper<DL_GroupParameters<Element> >(this, name, valueType, pValue)
284  CRYPTOPP_GET_FUNCTION_ENTRY(Modulus);
285 }
286 
288 {
289  AssignFromHelper(this, source)
290  CRYPTOPP_SET_FUNCTION_ENTRY2(Modulus, SubgroupGenerator)
291  CRYPTOPP_SET_FUNCTION_ENTRY(SubgroupOrder)
292  ;
293 }
294 
295 OID DL_GroupParameters_IntegerBased::GetAlgorithmID() const
296 {
297  return ASN1::id_dsa();
298 }
299 
300 void DL_GroupParameters_GFP::SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
301 {
302  ModularArithmetic ma(GetModulus());
303  ma.SimultaneousExponentiate(results, base, exponents, exponentsCount);
304 }
305 
306 DL_GroupParameters_GFP::Element DL_GroupParameters_GFP::MultiplyElements(const Element &a, const Element &b) const
307 {
308  return a_times_b_mod_c(a, b, GetModulus());
309 }
310 
311 DL_GroupParameters_GFP::Element DL_GroupParameters_GFP::CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const
312 {
313  ModularArithmetic ma(GetModulus());
314  return ma.CascadeExponentiate(element1, exponent1, element2, exponent2);
315 }
316 
318 {
319  return STDMIN(GetSubgroupOrder()-1, Integer::Power2(2*DiscreteLogWorkFactor(GetFieldType()*GetModulus().BitCount())));
320 }
321 
322 unsigned int DL_GroupParameters_IntegerBased::GetDefaultSubgroupOrderSize(unsigned int modulusSize) const
323 {
324  return 2*DiscreteLogWorkFactor(GetFieldType()*modulusSize);
325 }
326 
327 NAMESPACE_END
328 
329 #endif
void AssignFrom(const NameValuePairs &source)
Assign values to this object.
Definition: gfpcrypt.cpp:287
int GetIntValueWithDefault(const char *name, int defaultValue) const
Get a named value with type int, with default.
Definition: cryptlib.h:395
An invalid argument was detected.
Definition: cryptlib.h:202
void BERDecode(BufferedTransformation &bt)
Decode this object from a BufferedTransformation.
Definition: gfpcrypt.cpp:253
virtual Element Exponentiate(const DL_GroupPrecomputation< Element > &group, const Integer &exponent) const =0
Exponentiates an element.
virtual Integer GetCofactor() const
Retrieves the cofactor.
Definition: pubkey.h:884
Utility functions for the Crypto++ library.
T GetValueWithDefault(const char *name, T defaultValue) const
Get a named value.
Definition: cryptlib.h:363
Integer GetGroupOrder() const
Retrieves the order of the group.
Definition: gfpcrypt.h:80
void DEREncode(BufferedTransformation &bt) const
Encode in DER format.
Definition: integer.cpp:3432
size_t BitsToBytes(size_t bitCount)
Returns the number of 8-bit bytes or octets required for the specified number of bits.
Definition: misc.h:818
virtual void TruncatedFinal(byte *digest, size_t digestSize)=0
Computes the hash of the current message.
ASN.1 object identifiers for algorthms and schemes.
Library configuration file.
Ring of congruence classes modulo n.
Definition: modarith.h:38
Interface for random number generators.
Definition: cryptlib.h:1383
int Jacobi(const Integer &a, const Integer &b)
Calculate the Jacobi symbol.
Definition: nbtheory.cpp:785
Combines two sets of NameValuePairs.
Definition: algparam.h:124
Generator of prime numbers of special forms.
Definition: nbtheory.h:262
BER Sequence Decoder.
Definition: asn.h:309
Interface for buffered transformations.
Definition: cryptlib.h:1598
static const Integer & One()
Integer representing 1.
Definition: integer.cpp:4868
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const
Check the group for errors.
Definition: gfpcrypt.cpp:133
unsigned int ByteCount() const
Determines the number of bytes required to represent the Integer.
Definition: integer.cpp:3336
const char * SubgroupOrderSize()
int, in bits
Definition: argnames.h:31
const Integer & SubPrime() const
Retrieve second prime.
Definition: nbtheory.h:304
const Integer & Prime() const
Retrieve first prime.
Definition: nbtheory.h:300
AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed=true)
Create an object that implements NameValuePairs.
Definition: algparam.h:502
bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level=1)
Verifies a number is probably prime.
Definition: nbtheory.cpp:247
virtual const Element & GetSubgroupGenerator() const
Retrieves the subgroup generator.
Definition: pubkey.h:829
static Integer Power2(size_t e)
Exponentiates to a power of 2.
Definition: integer.cpp:3079
Multiple precision integer with arithmetic operations.
Definition: integer.h:49
Precompiled header file.
T1 SaturatingSubtract(const T1 &a, const T2 &b)
Performs a saturating subtract clamped at 0.
Definition: misc.h:972
const char * SubgroupGenerator()
Integer, ECP::Point, or EC2N::Point.
Definition: argnames.h:39
Classes and functions for schemes based on Discrete Logs (DL) over GF(p)
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
Definition: gfpcrypt.cpp:204
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const
Definition: gfpcrypt.cpp:70
Exception thrown when an invalid group element is encountered.
Definition: pubkey.h:743
RandomNumberGenerator & NullRNG()
Random Number Generator that does not produce random numbers.
Definition: cryptlib.cpp:400
const T & STDMIN(const T &a, const T &b)
Replacement function for std::min.
Definition: misc.h:535
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:69
Classes and functions for working with ANS.1 objects.
void Initialize(const DL_GroupParameters_IntegerBased &params)
Initialize a group parameters over integers.
Definition: gfpcrypt.h:43
unsigned int BitCount() const
Determines the number of bits required to represent the Integer.
Definition: integer.cpp:3345
Classes and functions for number theoretic operations.
unsigned int DiscreteLogWorkFactor(unsigned int bitlength)
Estimate work factor.
Definition: nbtheory.cpp:1027
DER Sequence Encoder.
Definition: asn.h:319
bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation< Integer > *precomp) const
Check the element for errors.
Definition: gfpcrypt.cpp:157
virtual const DL_GroupPrecomputation< Element > & GetGroupPrecomputation() const=0
Retrieves the group precomputation.
virtual unsigned int DigestSize() const =0
Provides the digest size of the hash.
void DEREncode(BufferedTransformation &bt) const
Encode this object into a BufferedTransformation.
Definition: gfpcrypt.cpp:272
Interface for hash functions and data processing part of MACs.
Definition: cryptlib.h:1084
Integer GetMaxExponent() const
Retrieves the maximum exponent for the group.
Definition: gfpcrypt.cpp:317
const char * Modulus()
Integer.
Definition: argnames.h:33
void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits)
Generate a Prime and Generator.
Definition: nbtheory.cpp:1036
Multiple precision integer with arithmetic operations.
const Integer & GetSubgroupOrder() const
Retrieves the subgroup order.
Definition: gfpcrypt.h:79
static const Integer & Zero()
Integer representing 0.
Definition: integer.cpp:4856
unsigned int GetEncodedElementSize(bool reversible) const
Retrieves the encoded element&#39;s size.
Definition: gfpcrypt.cpp:238
Class file for performing modular arithmetic.
Crypto++ library namespace.
bool GetValue(const char *name, T &value) const
Get a named value.
Definition: cryptlib.h:350
bool GetIntValue(const char *name, int &value) const
Get a named value with type int.
Definition: cryptlib.h:386
Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const
Decodes the element.
Definition: gfpcrypt.cpp:244
virtual Element ExponentiateElement(const Element &base, const Integer &exponent) const
Exponentiates an element.
Definition: pubkey.h:849
Object Identifier.
Definition: asn.h:166
const char * SubgroupOrder()
Integer.
Definition: argnames.h:37
const Integer & Generator() const
Retrieve the generator.
Definition: nbtheory.h:308
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
Definition: gfpcrypt.cpp:37
virtual bool IsIdentity(const Element &element) const=0
Determines if an element is an identity.
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Definition: gfpcrypt.cpp:281
bool IsOdd() const
Determines if the Integer is odd parity.
Definition: integer.h:351
Interface for retrieving values given their names.
Definition: cryptlib.h:293
Template implementing constructors for public key algorithm classes.
Definition: pubkey.h:2134