Crypto++  8.0
Free C++ class library of cryptographic schemes
eccrypto.h
Go to the documentation of this file.
1 // eccrypto.h - originally written and placed in the public domain by Wei Dai
2 // deterministic signatures added by by Douglas Roark
3 
4 /// \file eccrypto.h
5 /// \brief Classes and functions for Elliptic Curves over prime and binary fields
6 
7 #ifndef CRYPTOPP_ECCRYPTO_H
8 #define CRYPTOPP_ECCRYPTO_H
9 
10 #include "config.h"
11 #include "cryptlib.h"
12 #include "pubkey.h"
13 #include "integer.h"
14 #include "asn.h"
15 #include "hmac.h"
16 #include "sha.h"
17 #include "gfpcrypt.h"
18 #include "dh.h"
19 #include "mqv.h"
20 #include "hmqv.h"
21 #include "fhmqv.h"
22 #include "ecp.h"
23 #include "ec2n.h"
24 
25 #if CRYPTOPP_MSC_VERSION
26 # pragma warning(push)
27 # pragma warning(disable: 4231 4275)
28 #endif
29 
30 NAMESPACE_BEGIN(CryptoPP)
31 
32 /// \brief Elliptic Curve Parameters
33 /// \tparam EC elliptic curve field
34 /// \details This class corresponds to the ASN.1 sequence of the same name
35 /// in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N.
36 template <class EC>
37 class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
38 {
40 
41 public:
42  typedef EC EllipticCurve;
43  typedef typename EllipticCurve::Point Point;
44  typedef Point Element;
46 
47  virtual ~DL_GroupParameters_EC() {}
48 
49  /// \brief Construct an EC GroupParameters
50  DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {}
51 
52  /// \brief Construct an EC GroupParameters
53  /// \param oid the OID of a curve
55  : m_compress(false), m_encodeAsOID(true) {Initialize(oid);}
56 
57  /// \brief Construct an EC GroupParameters
58  /// \param ec the elliptic curve
59  /// \param G the base point
60  /// \param n the order of the base point
61  /// \param k the cofactor
62  DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
63  : m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);}
64 
65  /// \brief Construct an EC GroupParameters
66  /// \param bt BufferedTransformation with group parameters
68  : m_compress(false), m_encodeAsOID(true) {BERDecode(bt);}
69 
70  /// \brief Initialize an EC GroupParameters using {EC,G,n,k}
71  /// \param ec the elliptic curve
72  /// \param G the base point
73  /// \param n the order of the base point
74  /// \param k the cofactor
75  /// \details This Initialize() function overload initializes group parameters from existing parameters.
76  void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
77  {
78  this->m_groupPrecomputation.SetCurve(ec);
79  this->SetSubgroupGenerator(G);
80  m_n = n;
81  m_k = k;
82  }
83 
84  /// \brief Initialize a DL_GroupParameters_EC {EC,G,n,k}
85  /// \param oid the OID of a curve
86  /// \details This Initialize() function overload initializes group parameters from existing parameters.
87  void Initialize(const OID &oid);
88 
89  // NameValuePairs
90  bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
91  void AssignFrom(const NameValuePairs &source);
92 
93  // GeneratibleCryptoMaterial interface
94  /// this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
95  /*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */
97 
98  // DL_GroupParameters
99  const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
101  const Integer & GetSubgroupOrder() const {return m_n;}
102  Integer GetCofactor() const;
103  bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
104  bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
105  bool FastSubgroupCheckAvailable() const {return false;}
106  void EncodeElement(bool reversible, const Element &element, byte *encoded) const
107  {
108  if (reversible)
109  GetCurve().EncodePoint(encoded, element, m_compress);
110  else
111  element.x.Encode(encoded, GetEncodedElementSize(false));
112  }
113  virtual unsigned int GetEncodedElementSize(bool reversible) const
114  {
115  if (reversible)
116  return GetCurve().EncodedPointSize(m_compress);
117  else
118  return GetCurve().GetField().MaxElementByteLength();
119  }
120  Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
121  {
122  Point result;
123  if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
124  throw DL_BadElement();
125  if (checkForGroupMembership && !ValidateElement(1, result, NULLPTR))
126  throw DL_BadElement();
127  return result;
128  }
129  Integer ConvertElementToInteger(const Element &element) const;
131  bool IsIdentity(const Element &element) const {return element.identity;}
132  void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
133  static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
134 
135  // ASN1Key
136  OID GetAlgorithmID() const;
137 
138  // used by MQV
139  Element MultiplyElements(const Element &a, const Element &b) const;
140  Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
141 
142  // non-inherited
143 
144  // enumerate OIDs for recommended parameters, use OID() to get first one
145  static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
146 
147  void BERDecode(BufferedTransformation &bt);
148  void DEREncode(BufferedTransformation &bt) const;
149 
150  void SetPointCompression(bool compress) {m_compress = compress;}
151  bool GetPointCompression() const {return m_compress;}
152 
153  void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
154  bool GetEncodeAsOID() const {return m_encodeAsOID;}
155 
156  const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
157 
158  bool operator==(const ThisClass &rhs) const
159  {return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
160 
161 protected:
162  unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
163  unsigned int ExponentLength() const {return m_n.ByteCount();}
164 
165  OID m_oid; // set if parameters loaded from a recommended curve
166  Integer m_n; // order of base point
167  mutable Integer m_k; // cofactor
168  mutable bool m_compress, m_encodeAsOID; // presentation details
169 };
170 
171 /// \brief Elliptic Curve Discrete Log (DL) public key
172 /// \tparam EC elliptic curve field
173 template <class EC>
174 class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
175 {
176 public:
177  typedef typename EC::Point Element;
178 
179  virtual ~DL_PublicKey_EC() {}
180 
181  /// \brief Initialize an EC Public Key using {GP,Q}
182  /// \param params group parameters
183  /// \param Q the public point
184  /// \details This Initialize() function overload initializes a public key from existing parameters.
185  void Initialize(const DL_GroupParameters_EC<EC> &params, const Element &Q)
186  {this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
187 
188  /// \brief Initialize an EC Public Key using {EC,G,n,Q}
189  /// \param ec the elliptic curve
190  /// \param G the base point
191  /// \param n the order of the base point
192  /// \param Q the public point
193  /// \details This Initialize() function overload initializes a public key from existing parameters.
194  void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
195  {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
196 
197  // X509PublicKey
198  void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
200 };
201 
202 /// \brief Elliptic Curve Discrete Log (DL) private key
203 /// \tparam EC elliptic curve field
204 template <class EC>
205 class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
206 {
207 public:
208  typedef typename EC::Point Element;
209 
210  virtual ~DL_PrivateKey_EC();
211 
212  /// \brief Initialize an EC Private Key using {GP,x}
213  /// \param params group parameters
214  /// \param x the private exponent
215  /// \details This Initialize() function overload initializes a private key from existing parameters.
216  void Initialize(const DL_GroupParameters_EC<EC> &params, const Integer &x)
217  {this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}
218 
219  /// \brief Initialize an EC Private Key using {EC,G,n,x}
220  /// \param ec the elliptic curve
221  /// \param G the base point
222  /// \param n the order of the base point
223  /// \param x the private exponent
224  /// \details This Initialize() function overload initializes a private key from existing parameters.
225  void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
226  {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}
227 
228  /// \brief Create an EC private key
229  /// \param rng a RandomNumberGenerator derived class
230  /// \param params the EC group parameters
231  /// \details This function overload of Initialize() creates a new private key because it
232  /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
233  /// then use one of the other Initialize() overloads.
235  {this->GenerateRandom(rng, params);}
236 
237  /// \brief Create an EC private key
238  /// \param rng a RandomNumberGenerator derived class
239  /// \param ec the elliptic curve
240  /// \param G the base point
241  /// \param n the order of the base point
242  /// \details This function overload of Initialize() creates a new private key because it
243  /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
244  /// then use one of the other Initialize() overloads.
245  void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
246  {this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
247 
248  // PKCS8PrivateKey
249  void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
251 };
252 
253 // Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
254 template<class EC>
256 
257 /// \brief Elliptic Curve Diffie-Hellman
258 /// \tparam EC elliptic curve field
259 /// \tparam COFACTOR_OPTION cofactor multiplication option
260 /// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">Elliptic Curve Diffie-Hellman, AKA ECDH</a>
261 /// \since Crypto++ 3.0
262 template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
263 struct ECDH
264 {
265  typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
266 };
267 
268 /// \brief Elliptic Curve Menezes-Qu-Vanstone
269 /// \tparam EC elliptic curve field
270 /// \tparam COFACTOR_OPTION cofactor multiplication option
271 /// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">Elliptic Curve Menezes-Qu-Vanstone, AKA ECMQV</a>
272 template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
273 struct ECMQV
274 {
275  typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
276 };
277 
278 /// \brief Hashed Elliptic Curve Menezes-Qu-Vanstone
279 /// \tparam EC elliptic curve field
280 /// \tparam COFACTOR_OPTION cofactor multiplication option
281 /// \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
282 /// Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
283 /// \sa CofactorMultiplicationOption
284 template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
285 struct ECHMQV
286 {
287  typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
288 };
289 
294 
295 /// \brief Fully Hashed Elliptic Curve Menezes-Qu-Vanstone
296 /// \tparam EC elliptic curve field
297 /// \tparam COFACTOR_OPTION cofactor multiplication option
298 /// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
299 /// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
300 /// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
301 /// \sa CofactorMultiplicationOption
302 template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
303 struct ECFHMQV
304 {
305  typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
306 };
307 
312 
313 /// \brief Elliptic Curve Discrete Log (DL) keys
314 /// \tparam EC elliptic curve field
315 template <class EC>
317 {
320 };
321 
322 // Forward declaration; documented below
323 template <class EC, class H>
324 struct ECDSA;
325 
326 /// \brief Elliptic Curve DSA keys
327 /// \tparam EC elliptic curve field
328 /// \since Crypto++ 3.2
329 template <class EC>
331 {
334 };
335 
336 /// \brief Elliptic Curve DSA (ECDSA) signature algorithm
337 /// \tparam EC elliptic curve field
338 /// \since Crypto++ 3.2
339 template <class EC>
340 class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
341 {
342 public:
343  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";}
344 };
345 
346 /// \brief Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979
347 /// \tparam EC elliptic curve field
348 /// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
349 /// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
350 /// \since Crypto++ 6.0
351 template <class EC, class H>
352 class DL_Algorithm_ECDSA_RFC6979 : public DL_Algorithm_DSA_RFC6979<typename EC::Point, H>
353 {
354 public:
355  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA-RFC6979";}
356 };
357 
358 /// \brief Elliptic Curve NR (ECNR) signature algorithm
359 /// \tparam EC elliptic curve field
360 template <class EC>
361 class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
362 {
363 public:
364  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECNR";}
365 };
366 
367 /// \brief Elliptic Curve DSA (ECDSA) signature scheme
368 /// \tparam EC elliptic curve field
369 /// \tparam H HashTransformation derived class
370 /// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
371 /// \since Crypto++ 3.2
372 template <class EC, class H>
373 struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
374 {
375 };
376 
377 /// \brief Elliptic Curve DSA (ECDSA) deterministic signature scheme
378 /// \tparam EC elliptic curve field
379 /// \tparam H HashTransformation derived class
380 /// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">Deterministic Usage of the
381 /// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
382 /// \since Crypto++ 6.0
383 template <class EC, class H>
384 struct ECDSA_RFC6979 : public DL_SS<
385  DL_Keys_ECDSA<EC>,
386  DL_Algorithm_ECDSA_RFC6979<EC, H>,
387  DL_SignatureMessageEncodingMethod_DSA,
388  H,
389  ECDSA_RFC6979<EC,H> >
390 {
391  static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECDSA-RFC6979/") + H::StaticAlgorithmName();}
392 };
393 
394 /// \brief Elliptic Curve NR (ECNR) signature scheme
395 /// \tparam EC elliptic curve field
396 /// \tparam H HashTransformation derived class
397 template <class EC, class H = SHA1>
398 struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
399 {
400 };
401 
402 // ******************************************
403 
404 template <class EC>
406 template <class EC>
408 
409 /// \brief Elliptic Curve German DSA key for ISO/IEC 15946
410 /// \tparam EC elliptic curve field
411 /// \sa ECGDSA
412 /// \since Crypto++ 6.0
413 template <class EC>
414 class DL_PrivateKey_ECGDSA : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
415 {
416 public:
417  typedef typename EC::Point Element;
418 
419  virtual ~DL_PrivateKey_ECGDSA() {}
420 
421  /// \brief Initialize an EC Private Key using {GP,x}
422  /// \param params group parameters
423  /// \param x the private exponent
424  /// \details This Initialize() function overload initializes a private key from existing parameters.
425  void Initialize(const DL_GroupParameters_EC<EC> &params, const Integer &x)
426  {
427  this->AccessGroupParameters() = params;
428  this->SetPrivateExponent(x);
429  CRYPTOPP_ASSERT(x>=1 && x<=params.GetSubgroupOrder()-1);
430  }
431 
432  /// \brief Initialize an EC Private Key using {EC,G,n,x}
433  /// \param ec the elliptic curve
434  /// \param G the base point
435  /// \param n the order of the base point
436  /// \param x the private exponent
437  /// \details This Initialize() function overload initializes a private key from existing parameters.
438  void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
439  {
440  this->AccessGroupParameters().Initialize(ec, G, n);
441  this->SetPrivateExponent(x);
442  CRYPTOPP_ASSERT(x>=1 && x<=this->AccessGroupParameters().GetSubgroupOrder()-1);
443  }
444 
445  /// \brief Create an EC private key
446  /// \param rng a RandomNumberGenerator derived class
447  /// \param params the EC group parameters
448  /// \details This function overload of Initialize() creates a new private key because it
449  /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
450  /// then use one of the other Initialize() overloads.
452  {this->GenerateRandom(rng, params);}
453 
454  /// \brief Create an EC private key
455  /// \param rng a RandomNumberGenerator derived class
456  /// \param ec the elliptic curve
457  /// \param G the base point
458  /// \param n the order of the base point
459  /// \details This function overload of Initialize() creates a new private key because it
460  /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
461  /// then use one of the other Initialize() overloads.
462  void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
463  {this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
464 
465  virtual void MakePublicKey(DL_PublicKey_ECGDSA<EC> &pub) const
466  {
468  pub.AccessAbstractGroupParameters().AssignFrom(params);
469  const Integer &xInv = this->GetPrivateExponent().InverseMod(params.GetSubgroupOrder());
470  pub.SetPublicElement(params.ExponentiateBase(xInv));
471  CRYPTOPP_ASSERT(xInv.NotZero());
472  }
473 
474  virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
475  {
476  return GetValueHelper<DL_PrivateKey_ECGDSA<EC>,
477  DL_PrivateKey_ECGDSA<EC> >(this, name, valueType, pValue).Assignable();
478  }
479 
480  virtual void AssignFrom(const NameValuePairs &source)
481  {
482  AssignFromHelper<DL_PrivateKey_ECGDSA<EC>,
483  DL_PrivateKey_ECGDSA<EC> >(this, source);
484  }
485 
486  // PKCS8PrivateKey
487  void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
489 };
490 
491 /// \brief Elliptic Curve German DSA key for ISO/IEC 15946
492 /// \tparam EC elliptic curve field
493 /// \sa ECGDSA
494 /// \since Crypto++ 6.0
495 template <class EC>
496 class DL_PublicKey_ECGDSA : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
497 {
498  typedef DL_PublicKey_ECGDSA<EC> ThisClass;
499 
500 public:
501  typedef typename EC::Point Element;
502 
503  virtual ~DL_PublicKey_ECGDSA() {}
504 
505  /// \brief Initialize an EC Public Key using {GP,Q}
506  /// \param params group parameters
507  /// \param Q the public point
508  /// \details This Initialize() function overload initializes a public key from existing parameters.
509  void Initialize(const DL_GroupParameters_EC<EC> &params, const Element &Q)
510  {this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
511 
512  /// \brief Initialize an EC Public Key using {EC,G,n,Q}
513  /// \param ec the elliptic curve
514  /// \param G the base point
515  /// \param n the order of the base point
516  /// \param Q the public point
517  /// \details This Initialize() function overload initializes a public key from existing parameters.
518  void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
519  {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
520 
521  virtual void AssignFrom(const NameValuePairs &source)
522  {
523  DL_PrivateKey_ECGDSA<EC> *pPrivateKey = NULLPTR;
524  if (source.GetThisPointer(pPrivateKey))
525  pPrivateKey->MakePublicKey(*this);
526  else
527  {
528  this->AccessAbstractGroupParameters().AssignFrom(source);
529  AssignFromHelper(this, source)
530  CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement);
531  }
532  }
533 
534  // DL_PublicKey<T>
535  virtual void SetPublicElement(const Element &y)
536  {this->AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);}
537 
538  // X509PublicKey
539  void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
541 };
542 
543 /// \brief Elliptic Curve German DSA keys for ISO/IEC 15946
544 /// \tparam EC elliptic curve field
545 /// \sa ECGDSA
546 /// \since Crypto++ 6.0
547 template <class EC>
549 {
552 };
553 
554 /// \brief Elliptic Curve German DSA signature algorithm
555 /// \tparam EC elliptic curve field
556 /// \sa ECGDSA
557 /// \since Crypto++ 6.0
558 template <class EC>
559 class DL_Algorithm_ECGDSA : public DL_Algorithm_GDSA_ISO15946<typename EC::Point>
560 {
561 public:
562  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECGDSA";}
563 };
564 
565 /// \brief Elliptic Curve German Digital Signature Algorithm signature scheme
566 /// \tparam EC elliptic curve field
567 /// \tparam H HashTransformation derived class
568 /// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A
569 /// HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">The Digital Signature Scheme
570 /// ECGDSA (October 24, 2006)</A>
571 /// \since Crypto++ 6.0
572 template <class EC, class H>
573 struct ECGDSA : public DL_SS<
574  DL_Keys_ECGDSA<EC>,
575  DL_Algorithm_ECGDSA<EC>,
576  DL_SignatureMessageEncodingMethod_DSA,
577  H>
578 {
579  static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECGDSA-ISO15946/") + H::StaticAlgorithmName();}
580 };
581 
582 // ******************************************
583 
584 /// \brief Elliptic Curve Integrated Encryption Scheme
585 /// \tparam COFACTOR_OPTION cofactor multiplication option
586 /// \tparam HASH HashTransformation derived class used for key drivation and MAC computation
587 /// \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as <em>u·V</em>, <em>v·U</em> and label
588 /// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
589 /// \details ECIES is an Elliptic Curve based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation
590 /// Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
591 /// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
592 /// You should prefer an Integrated Encryption Scheme over homegrown schemes.
593 /// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
594 /// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption
595 /// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
596 /// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES template class with
597 /// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
598 /// \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
599 /// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
600 /// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
601 /// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
602 /// SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the
603 /// security provided by the MAC. The hash is also used in the key derivation function as a PRF.
604 /// \details Below is an example of constructing a Crypto++ 4.2 compatible ECIES encryptor and decryptor.
605 /// <pre>
606 /// AutoSeededRandomPool prng;
607 /// DL_PrivateKey_EC<ECP> key;
608 /// key.Initialize(prng, ASN1::secp160r1());
609 ///
610 /// ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key);
611 /// ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor);
612 /// </pre>
613 /// \sa DLIES, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
614 /// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
615 /// Curve Integrated Encryption Schemes</A>
616 /// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
617 template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS = false>
618 struct ECIES
619  : public DL_ES<
620  DL_Keys_EC<EC>,
621  DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
622  DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<HASH> >,
623  DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
624  ECIES<EC> >
625 {
626  // TODO: fix this after name is standardized
627  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES";}
628 };
629 
630 NAMESPACE_END
631 
632 #ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
633 #include "eccrypto.cpp"
634 #endif
635 
636 NAMESPACE_BEGIN(CryptoPP)
637 
638 CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>;
639 CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>;
640 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >;
641 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >;
642 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>;
643 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>;
644 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<ECP>;
645 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<EC2N>;
646 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >;
647 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >;
648 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>;
649 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>;
650 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<ECP>;
651 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<EC2N>;
652 CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>;
653 CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>;
656 
657 NAMESPACE_END
658 
659 #if CRYPTOPP_MSC_VERSION
660 # pragma warning(pop)
661 #endif
662 
663 #endif
SHA-384 message digest.
Definition: sha.h:176
bool NotZero() const
Determines if the Integer is non-0.
Definition: integer.h:333
Elliptic Curve German DSA signature algorithm.
Definition: eccrypto.h:559
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
Initialize an EC Private Key using {EC,G,n,x}.
Definition: eccrypto.h:438
void DEREncodePublicKey(BufferedTransformation &bt) const
encode subjectPublicKey part of subjectPublicKeyInfo, without the BIT STRING header ...
Definition: eccrypto.cpp:700
Classes for Fully Hashed Menezes-Qu-Vanstone key agreement in GF(p)
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const
Check the group for errors.
Definition: eccrypto.cpp:611
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
Initialize an EC Public Key using {EC,G,n,Q}.
Definition: eccrypto.h:518
Elliptic Curve German DSA key for ISO/IEC 15946.
Definition: eccrypto.h:405
void DEREncodePublicKey(BufferedTransformation &bt) const
encode subjectPublicKey part of subjectPublicKeyInfo, without the BIT STRING header ...
Definition: eccrypto.cpp:771
DL_GroupParameters_EC()
Construct an EC GroupParameters.
Definition: eccrypto.h:50
void AssignFrom(const NameValuePairs &source)
Assign values to this object.
Definition: eccrypto.cpp:511
SHA-256 message digest.
Definition: sha.h:64
Integer GetMaxExponent() const
Retrieves the maximum exponent for the group.
Definition: eccrypto.h:130
void DEREncodePrivateKey(BufferedTransformation &bt) const
encode privateKey part of privateKeyInfo, without the OCTET STRING header
Definition: eccrypto.cpp:818
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
Create an EC private key.
Definition: eccrypto.h:245
This file contains helper classes/functions for implementing public key algorithms.
Elliptic Curve DSA keys.
Definition: eccrypto.h:330
Classes for Elliptic Curves over prime fields.
virtual void SetSubgroupGenerator(const Element &base)
Sets the subgroup generator.
Definition: pubkey.h:834
Fully Hashed Menezes-Qu-Vanstone in GF(p)
Definition: fhmqv.h:24
Fully Hashed Elliptic Curve Menezes-Qu-Vanstone.
Definition: eccrypto.h:303
Interface for Discrete Log (DL) group parameters.
Definition: pubkey.h:753
Elliptic Curve DSA (ECDSA) signature scheme.
Definition: eccrypto.h:324
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC< EC > &params)
Create an EC private key.
Definition: eccrypto.h:451
Converts an enumeration to a type suitable for use as a template parameter.
Definition: cryptlib.h:135
Abstract base classes that provide a uniform interface to this library.
const DL_GroupParameters< Element > & GetAbstractGroupParameters() const
Definition: pubkey.h:1344
Hashed Menezes-Qu-Vanstone in GF(p)
Definition: hmqv.h:23
Elliptic Curve Discrete Log (DL) keys.
Definition: eccrypto.h:316
Elliptic Curve Discrete Log (DL) public key.
Definition: eccrypto.h:174
DL_FixedBasePrecomputation< Element > & AccessBasePrecomputation()
Retrieves the group precomputation.
Definition: eccrypto.h:100
virtual void AssignFrom(const NameValuePairs &source)
Assign values to this object.
Definition: eccrypto.h:521
Library configuration file.
Interface for random number generators.
Definition: cryptlib.h:1383
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
this implementation doesn&#39;t actually generate a curve, it just initializes the parameters with existi...
Definition: eccrypto.cpp:532
Elliptic Curve Discrete Log (DL) private key.
Definition: eccrypto.h:205
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
Definition: integer.cpp:4421
Discrete Log (DL) encryption scheme.
Definition: pubkey.h:2298
const Integer & GetSubgroupOrder() const
Retrieves the subgroup order.
Definition: eccrypto.h:101
Interface for buffered transformations.
Definition: cryptlib.h:1598
virtual Element ExponentiateBase(const Integer &exponent) const
Exponentiates the base.
Definition: pubkey.h:839
Classes for Hashed Menezes-Qu-Vanstone key agreement in GF(p)
Elliptic Curve German Digital Signature Algorithm signature scheme.
Definition: eccrypto.h:573
Integer GetCofactor() const
Retrieves the cofactor.
Definition: eccrypto.cpp:592
Elliptic Curve German DSA key for ISO/IEC 15946.
Definition: eccrypto.h:407
virtual void SetPublicElement(const Element &y)
Sets the public element.
Definition: pubkey.h:1063
Discrete Log (DL) signature scheme.
Definition: pubkey.h:2275
Classes for Elliptic Curves over binary fields.
unsigned int ByteCount() const
Determines the number of bytes required to represent the Integer.
Definition: integer.cpp:3336
Discrete Log (DL) private key base implementation.
Definition: pubkey.h:1208
Classes for HMAC message authentication codes.
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Definition: eccrypto.cpp:494
virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Definition: eccrypto.h:474
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
Create an EC private key.
Definition: eccrypto.h:462
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
decode subjectPublicKey part of subjectPublicKeyInfo, without the BIT STRING header ...
Definition: eccrypto.cpp:760
DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k=Integer::Zero())
Construct an EC GroupParameters.
Definition: eccrypto.h:62
MQV domain for performing authenticated key agreement.
Definition: mqv.h:28
Hashed Elliptic Curve Menezes-Qu-Vanstone.
Definition: eccrypto.h:285
Classes for Diffie-Hellman key exchange.
void Initialize(const DL_GroupParameters_EC< EC > &params, const Element &Q)
Initialize an EC Public Key using {GP,Q}.
Definition: eccrypto.h:185
SHA-512 message digest.
Definition: sha.h:141
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
Initialize an EC Private Key using {EC,G,n,x}.
Definition: eccrypto.h:225
Elliptic Curve Menezes-Qu-Vanstone.
Definition: eccrypto.h:273
Multiple precision integer with arithmetic operations.
Definition: integer.h:49
Elliptic Curve Integrated Encryption Scheme.
Definition: eccrypto.h:618
SHA-1 message digest.
Definition: sha.h:26
Elliptic Curve NR (ECNR) signature algorithm.
Definition: eccrypto.h:361
void DEREncodePrivateKey(BufferedTransformation &bt) const
encode privateKey part of privateKeyInfo, without the OCTET STRING header
Definition: eccrypto.cpp:747
Elliptic Curve German DSA keys for ISO/IEC 15946.
Definition: eccrypto.h:548
void Initialize(const DL_GroupParameters_EC< EC > &params, const Integer &x)
Initialize an EC Private Key using {GP,x}.
Definition: eccrypto.h:425
Classes and functions for schemes based on Discrete Logs (DL) over GF(p)
virtual unsigned int GetEncodedElementSize(bool reversible) const
Retrieves the encoded element&#39;s size.
Definition: eccrypto.h:113
Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
Decodes the element.
Definition: eccrypto.h:120
Elliptic Curve DSA (ECDSA) signature algorithm.
Definition: eccrypto.h:340
Exception thrown when an invalid group element is encountered.
Definition: pubkey.h:743
virtual void AssignFrom(const NameValuePairs &source)
Assign values to this object.
Definition: eccrypto.h:480
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
decode privateKey part of privateKeyInfo, without the OCTET STRING header
Definition: eccrypto.cpp:779
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:69
Diffie-Hellman domain.
Definition: dh.h:25
Elliptic Curve Diffie-Hellman.
Definition: eccrypto.h:263
DL_GroupParameters_EC(const OID &oid)
Construct an EC GroupParameters.
Definition: eccrypto.h:54
Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979.
Definition: eccrypto.h:352
Classes and functions for working with ANS.1 objects.
DL_FixedBasePrecomputation interface.
Definition: eprecomp.h:60
Classes for SHA-1 and SHA-2 family of message digests.
Elliptic Curve Parameters.
Definition: eccrypto.h:37
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC< EC > &params)
Create an EC private key.
Definition: eccrypto.h:234
DL_GroupParameters< Element > & AccessAbstractGroupParameters()
Definition: pubkey.h:1345
DL_FixedBasePrecomputation< Element > & AccessPublicPrecomputation()
Definition: pubkey.h:1349
DSA signature algorithm based on RFC 6979.
Definition: gfpcrypt.h:231
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
Initialize an EC Public Key using {EC,G,n,Q}.
Definition: eccrypto.h:194
GDSA algorithm.
Definition: gfpcrypt.h:194
DL_GroupParameters_EC(BufferedTransformation &bt)
Construct an EC GroupParameters.
Definition: eccrypto.h:67
NR algorithm.
Definition: gfpcrypt.h:430
Discrete Log (DL) public key base implementation.
Definition: pubkey.h:1298
Multiple precision integer with arithmetic operations.
static const Integer & Zero()
Integer representing 0.
Definition: integer.cpp:4856
Elliptic Curve DSA (ECDSA) deterministic signature scheme.
Definition: eccrypto.h:384
bool GetThisPointer(T *&ptr) const
Get a pointer to this object.
Definition: cryptlib.h:337
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k=Integer::Zero())
Initialize an EC GroupParameters using {EC,G,n,k}.
Definition: eccrypto.h:76
Crypto++ library namespace.
const DL_FixedBasePrecomputation< Element > & GetBasePrecomputation() const
Retrieves the group precomputation.
Definition: eccrypto.h:99
Base implementation of Discrete Log (DL) group parameters.
Definition: pubkey.h:983
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params)
Definition: pubkey.h:1239
Classes for Menezes–Qu–Vanstone (MQV) key agreement.
German Digital Signature Algorithm.
Definition: gfpcrypt.h:389
Object Identifier.
Definition: asn.h:166
const char * PublicElement()
Integer.
Definition: argnames.h:36
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
decode subjectPublicKey part of subjectPublicKeyInfo, without the BIT STRING header ...
Definition: eccrypto.cpp:689
const Integer & GetPrivateExponent() const
Definition: pubkey.h:1263
void Initialize(const DL_GroupParameters_EC< EC > &params, const Integer &x)
Initialize an EC Private Key using {GP,x}.
Definition: eccrypto.h:216
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
decode privateKey part of privateKeyInfo, without the OCTET STRING header
Definition: eccrypto.cpp:708
Elliptic Curve NR (ECNR) signature scheme.
Definition: eccrypto.h:398
void Initialize(const DL_GroupParameters_EC< EC > &params, const Element &Q)
Initialize an EC Public Key using {GP,Q}.
Definition: eccrypto.h:509
const DL_GroupParameters< Element > & GetAbstractGroupParameters() const
Definition: pubkey.h:1259
Interface for retrieving values given their names.
Definition: cryptlib.h:293
virtual const Integer & GetSubgroupOrder() const =0
Retrieves the subgroup order.