Crypto++  8.8
Free C++ class library of cryptographic schemes
blake2s_simd.cpp
1 // blake2_simd.cpp - written and placed in the public domain by
2 // Samuel Neves, Jeffrey Walton, Uri Blumenthal
3 // and Marcel Raad.
4 //
5 // This source file uses intrinsics to gain access to ARMv7a/ARMv8a
6 // NEON, Power7 and SSE4.1 instructions. A separate source file is
7 // needed because additional CXXFLAGS are required to enable the
8 // appropriate instructions sets in some build configurations.
9 
10 // The BLAKE2b and BLAKE2s numbers are consistent with the BLAKE2 team's
11 // numbers. However, we have an Altivec implementation of BLAKE2s,
12 // and a POWER8 implementation of BLAKE2b (BLAKE2 team is missing them).
13 // Altivec code is about 2x faster than C++ when using GCC 5.0 or
14 // above. The POWER8 code is about 2.5x faster than C++ when using GCC 5.0
15 // or above. If you use GCC 4.0 (PowerMac) or GCC 4.8 (GCC Compile Farm)
16 // then the PowerPC code will be slower than C++. Be sure to use GCC 5.0
17 // or above for PowerPC builds or disable Altivec for BLAKE2b and BLAKE2s
18 // if using the old compilers.
19 
20 #include "pch.h"
21 #include "config.h"
22 #include "misc.h"
23 #include "blake2.h"
24 
25 // Uncomment for benchmarking C++ against SSE2 or NEON.
26 // Do so in both blake2.cpp and blake2_simd.cpp.
27 // #undef CRYPTOPP_SSE41_AVAILABLE
28 // #undef CRYPTOPP_ARM_NEON_AVAILABLE
29 // #undef CRYPTOPP_ALTIVEC_AVAILABLE
30 
31 // Disable NEON/ASIMD for Cortex-A53 and A57. The shifts are too slow and C/C++ is about
32 // 3 cpb faster than NEON/ASIMD. Also see http://github.com/weidai11/cryptopp/issues/367.
33 #if (defined(__aarch32__) || defined(__aarch64__)) && defined(CRYPTOPP_SLOW_ARMV8_SHIFT)
34 # undef CRYPTOPP_ARM_NEON_AVAILABLE
35 #endif
36 
37 // BLAKE2s bug on AIX 7.1 (POWER7) with XLC 12.01
38 // https://github.com/weidai11/cryptopp/issues/743
39 #if defined(__xlC__) && (__xlC__ < 0x0d01)
40 # define CRYPTOPP_DISABLE_ALTIVEC 1
41 # undef CRYPTOPP_POWER7_AVAILABLE
42 # undef CRYPTOPP_ALTIVEC_AVAILABLE
43 #endif
44 
45 #if defined(__XOP__)
46 # if defined(CRYPTOPP_GCC_COMPATIBLE)
47 # include <x86intrin.h>
48 # endif
49 # include <ammintrin.h>
50 #endif // XOP
51 
52 #if (CRYPTOPP_SSE41_AVAILABLE)
53 # include <emmintrin.h>
54 # include <tmmintrin.h>
55 # include <smmintrin.h>
56 #endif
57 
58 #if (CRYPTOPP_ARM_NEON_HEADER)
59 # include <arm_neon.h>
60 #endif
61 
62 #if (CRYPTOPP_ARM_ACLE_HEADER)
63 # include <stdint.h>
64 # include <arm_acle.h>
65 #endif
66 
67 #if (CRYPTOPP_ALTIVEC_AVAILABLE)
68 # include "ppc_simd.h"
69 #endif
70 
71 #if defined(CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE)
72 /* Ignore "warning: vec_lvsl is deprecated..." */
73 # pragma GCC diagnostic ignored "-Wdeprecated"
74 #endif
75 
76 // Squash MS LNK4221 and libtool warnings
77 extern const char BLAKE2S_SIMD_FNAME[] = __FILE__;
78 
79 NAMESPACE_BEGIN(CryptoPP)
80 
81 // Exported by blake2.cpp
82 extern const word32 BLAKE2S_IV[8];
83 extern const word64 BLAKE2B_IV[8];
84 
85 #if CRYPTOPP_SSE41_AVAILABLE
86 
87 #define LOADU(p) _mm_loadu_si128((const __m128i *)(const void*)(p))
88 #define STOREU(p,r) _mm_storeu_si128((__m128i *)(void*)(p), r)
89 #define TOF(reg) _mm_castsi128_ps((reg))
90 #define TOI(reg) _mm_castps_si128((reg))
91 
92 void BLAKE2_Compress32_SSE4(const byte* input, BLAKE2s_State& state)
93 {
94  #define BLAKE2S_LOAD_MSG_0_1(buf) \
95  buf = TOI(_mm_shuffle_ps(TOF(m0), TOF(m1), _MM_SHUFFLE(2,0,2,0)));
96 
97  #define BLAKE2S_LOAD_MSG_0_2(buf) \
98  buf = TOI(_mm_shuffle_ps(TOF(m0), TOF(m1), _MM_SHUFFLE(3,1,3,1)));
99 
100  #define BLAKE2S_LOAD_MSG_0_3(buf) \
101  t0 = _mm_shuffle_epi32(m2, _MM_SHUFFLE(3,2,0,1)); \
102  t1 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(0,1,3,2)); \
103  buf = _mm_blend_epi16(t0, t1, 0xC3);
104 
105  #define BLAKE2S_LOAD_MSG_0_4(buf) \
106  t0 = _mm_blend_epi16(t0, t1, 0x3C); \
107  buf = _mm_shuffle_epi32(t0, _MM_SHUFFLE(2,3,0,1));
108 
109  #define BLAKE2S_LOAD_MSG_1_1(buf) \
110  t0 = _mm_blend_epi16(m1, m2, 0x0C); \
111  t1 = _mm_slli_si128(m3, 4); \
112  t2 = _mm_blend_epi16(t0, t1, 0xF0); \
113  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,1,0,3));
114 
115  #define BLAKE2S_LOAD_MSG_1_2(buf) \
116  t0 = _mm_shuffle_epi32(m2,_MM_SHUFFLE(0,0,2,0)); \
117  t1 = _mm_blend_epi16(m1,m3,0xC0); \
118  t2 = _mm_blend_epi16(t0, t1, 0xF0); \
119  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,3,0,1));
120 
121  #define BLAKE2S_LOAD_MSG_1_3(buf) \
122  t0 = _mm_slli_si128(m1, 4); \
123  t1 = _mm_blend_epi16(m2, t0, 0x30); \
124  t2 = _mm_blend_epi16(m0, t1, 0xF0); \
125  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,0,1,2));
126 
127  #define BLAKE2S_LOAD_MSG_1_4(buf) \
128  t0 = _mm_unpackhi_epi32(m0,m1); \
129  t1 = _mm_slli_si128(m3, 4); \
130  t2 = _mm_blend_epi16(t0, t1, 0x0C); \
131  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,0,1,2));
132 
133  #define BLAKE2S_LOAD_MSG_2_1(buf) \
134  t0 = _mm_unpackhi_epi32(m2,m3); \
135  t1 = _mm_blend_epi16(m3,m1,0x0C); \
136  t2 = _mm_blend_epi16(t0, t1, 0x0F); \
137  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,1,0,2));
138 
139  #define BLAKE2S_LOAD_MSG_2_2(buf) \
140  t0 = _mm_unpacklo_epi32(m2,m0); \
141  t1 = _mm_blend_epi16(t0, m0, 0xF0); \
142  t2 = _mm_slli_si128(m3, 8); \
143  buf = _mm_blend_epi16(t1, t2, 0xC0);
144 
145  #define BLAKE2S_LOAD_MSG_2_3(buf) \
146  t0 = _mm_blend_epi16(m0, m2, 0x3C); \
147  t1 = _mm_srli_si128(m1, 12); \
148  t2 = _mm_blend_epi16(t0,t1,0x03); \
149  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(0,3,2,1));
150 
151  #define BLAKE2S_LOAD_MSG_2_4(buf) \
152  t0 = _mm_slli_si128(m3, 4); \
153  t1 = _mm_blend_epi16(m0, m1, 0x33); \
154  t2 = _mm_blend_epi16(t1, t0, 0xC0); \
155  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(1,2,3,0));
156 
157  #define BLAKE2S_LOAD_MSG_3_1(buf) \
158  t0 = _mm_unpackhi_epi32(m0,m1); \
159  t1 = _mm_unpackhi_epi32(t0, m2); \
160  t2 = _mm_blend_epi16(t1, m3, 0x0C); \
161  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,1,0,2));
162 
163  #define BLAKE2S_LOAD_MSG_3_2(buf) \
164  t0 = _mm_slli_si128(m2, 8); \
165  t1 = _mm_blend_epi16(m3,m0,0x0C); \
166  t2 = _mm_blend_epi16(t1, t0, 0xC0); \
167  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,0,1,3));
168 
169  #define BLAKE2S_LOAD_MSG_3_3(buf) \
170  t0 = _mm_blend_epi16(m0,m1,0x0F); \
171  t1 = _mm_blend_epi16(t0, m3, 0xC0); \
172  buf = _mm_shuffle_epi32(t1, _MM_SHUFFLE(0,1,2,3));
173 
174  #define BLAKE2S_LOAD_MSG_3_4(buf) \
175  t0 = _mm_alignr_epi8(m0, m1, 4); \
176  buf = _mm_blend_epi16(t0, m2, 0x33);
177 
178  #define BLAKE2S_LOAD_MSG_4_1(buf) \
179  t0 = _mm_unpacklo_epi64(m1,m2); \
180  t1 = _mm_unpackhi_epi64(m0,m2); \
181  t2 = _mm_blend_epi16(t0,t1,0x33); \
182  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,0,1,3));
183 
184  #define BLAKE2S_LOAD_MSG_4_2(buf) \
185  t0 = _mm_unpackhi_epi64(m1,m3); \
186  t1 = _mm_unpacklo_epi64(m0,m1); \
187  buf = _mm_blend_epi16(t0,t1,0x33);
188 
189  #define BLAKE2S_LOAD_MSG_4_3(buf) \
190  t0 = _mm_unpackhi_epi64(m3,m1); \
191  t1 = _mm_unpackhi_epi64(m2,m0); \
192  t2 = _mm_blend_epi16(t1,t0,0x33); \
193  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,1,0,3));
194 
195  #define BLAKE2S_LOAD_MSG_4_4(buf) \
196  t0 = _mm_blend_epi16(m0,m2,0x03); \
197  t1 = _mm_slli_si128(t0, 8); \
198  t2 = _mm_blend_epi16(t1,m3,0x0F); \
199  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,0,3,1));
200 
201  #define BLAKE2S_LOAD_MSG_5_1(buf) \
202  t0 = _mm_unpackhi_epi32(m0,m1); \
203  t1 = _mm_unpacklo_epi32(m0,m2); \
204  buf = _mm_unpacklo_epi64(t0,t1);
205 
206  #define BLAKE2S_LOAD_MSG_5_2(buf) \
207  t0 = _mm_srli_si128(m2, 4); \
208  t1 = _mm_blend_epi16(m0,m3,0x03); \
209  buf = _mm_blend_epi16(t1,t0,0x3C);
210 
211  #define BLAKE2S_LOAD_MSG_5_3(buf) \
212  t0 = _mm_blend_epi16(m1,m0,0x0C); \
213  t1 = _mm_srli_si128(m3, 4); \
214  t2 = _mm_blend_epi16(t0,t1,0x30); \
215  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,3,0,1));
216 
217  #define BLAKE2S_LOAD_MSG_5_4(buf) \
218  t0 = _mm_unpacklo_epi64(m2,m1); \
219  t1 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(2,0,1,0)); \
220  t2 = _mm_srli_si128(t0, 4); \
221  buf = _mm_blend_epi16(t1,t2,0x33);
222 
223  #define BLAKE2S_LOAD_MSG_6_1(buf) \
224  t0 = _mm_slli_si128(m1, 12); \
225  t1 = _mm_blend_epi16(m0,m3,0x33); \
226  buf = _mm_blend_epi16(t1,t0,0xC0);
227 
228  #define BLAKE2S_LOAD_MSG_6_2(buf) \
229  t0 = _mm_blend_epi16(m3,m2,0x30); \
230  t1 = _mm_srli_si128(m1, 4); \
231  t2 = _mm_blend_epi16(t0,t1,0x03); \
232  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,1,3,0));
233 
234  #define BLAKE2S_LOAD_MSG_6_3(buf) \
235  t0 = _mm_unpacklo_epi64(m0,m2); \
236  t1 = _mm_srli_si128(m1, 4); \
237  t2 = _mm_blend_epi16(t0,t1,0x0C); \
238  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,1,0,2));
239 
240  #define BLAKE2S_LOAD_MSG_6_4(buf) \
241  t0 = _mm_unpackhi_epi32(m1,m2); \
242  t1 = _mm_unpackhi_epi64(m0,t0); \
243  buf = _mm_shuffle_epi32(t1, _MM_SHUFFLE(0,1,2,3));
244 
245  #define BLAKE2S_LOAD_MSG_7_1(buf) \
246  t0 = _mm_unpackhi_epi32(m0,m1); \
247  t1 = _mm_blend_epi16(t0,m3,0x0F); \
248  buf = _mm_shuffle_epi32(t1,_MM_SHUFFLE(2,0,3,1));
249 
250  #define BLAKE2S_LOAD_MSG_7_2(buf) \
251  t0 = _mm_blend_epi16(m2,m3,0x30); \
252  t1 = _mm_srli_si128(m0,4); \
253  t2 = _mm_blend_epi16(t0,t1,0x03); \
254  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(1,0,2,3));
255 
256  #define BLAKE2S_LOAD_MSG_7_3(buf) \
257  t0 = _mm_unpackhi_epi64(m0,m3); \
258  t1 = _mm_unpacklo_epi64(m1,m2); \
259  t2 = _mm_blend_epi16(t0,t1,0x3C); \
260  buf = _mm_shuffle_epi32(t2,_MM_SHUFFLE(2,3,1,0));
261 
262  #define BLAKE2S_LOAD_MSG_7_4(buf) \
263  t0 = _mm_unpacklo_epi32(m0,m1); \
264  t1 = _mm_unpackhi_epi32(m1,m2); \
265  t2 = _mm_unpacklo_epi64(t0,t1); \
266  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,1,0,3));
267 
268  #define BLAKE2S_LOAD_MSG_8_1(buf) \
269  t0 = _mm_unpackhi_epi32(m1,m3); \
270  t1 = _mm_unpacklo_epi64(t0,m0); \
271  t2 = _mm_blend_epi16(t1,m2,0xC0); \
272  buf = _mm_shufflehi_epi16(t2,_MM_SHUFFLE(1,0,3,2));
273 
274  #define BLAKE2S_LOAD_MSG_8_2(buf) \
275  t0 = _mm_unpackhi_epi32(m0,m3); \
276  t1 = _mm_blend_epi16(m2,t0,0xF0); \
277  buf = _mm_shuffle_epi32(t1,_MM_SHUFFLE(0,2,1,3));
278 
279  #define BLAKE2S_LOAD_MSG_8_3(buf) \
280  t0 = _mm_unpacklo_epi64(m0,m3); \
281  t1 = _mm_srli_si128(m2,8); \
282  t2 = _mm_blend_epi16(t0,t1,0x03); \
283  buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(1,3,2,0));
284 
285  #define BLAKE2S_LOAD_MSG_8_4(buf) \
286  t0 = _mm_blend_epi16(m1,m0,0x30); \
287  buf = _mm_shuffle_epi32(t0,_MM_SHUFFLE(0,3,2,1));
288 
289  #define BLAKE2S_LOAD_MSG_9_1(buf) \
290  t0 = _mm_blend_epi16(m0,m2,0x03); \
291  t1 = _mm_blend_epi16(m1,m2,0x30); \
292  t2 = _mm_blend_epi16(t1,t0,0x0F); \
293  buf = _mm_shuffle_epi32(t2,_MM_SHUFFLE(1,3,0,2));
294 
295  #define BLAKE2S_LOAD_MSG_9_2(buf) \
296  t0 = _mm_slli_si128(m0,4); \
297  t1 = _mm_blend_epi16(m1,t0,0xC0); \
298  buf = _mm_shuffle_epi32(t1,_MM_SHUFFLE(1,2,0,3));
299 
300  #define BLAKE2S_LOAD_MSG_9_3(buf) \
301  t0 = _mm_unpackhi_epi32(m0,m3); \
302  t1 = _mm_unpacklo_epi32(m2,m3); \
303  t2 = _mm_unpackhi_epi64(t0,t1); \
304  buf = _mm_shuffle_epi32(t2,_MM_SHUFFLE(0,2,1,3));
305 
306  #define BLAKE2S_LOAD_MSG_9_4(buf) \
307  t0 = _mm_blend_epi16(m3,m2,0xC0); \
308  t1 = _mm_unpacklo_epi32(m0,m3); \
309  t2 = _mm_blend_epi16(t0,t1,0x0F); \
310  buf = _mm_shuffle_epi32(t2,_MM_SHUFFLE(1,2,3,0));
311 
312 #ifdef __XOP__
313 # define MM_ROTI_EPI32(r, c) \
314  _mm_roti_epi32(r, c)
315 #else
316 # define MM_ROTI_EPI32(r, c) ( \
317  (8==-(c)) ? _mm_shuffle_epi8(r,r8) \
318  : (16==-(c)) ? _mm_shuffle_epi8(r,r16) \
319  : _mm_xor_si128(_mm_srli_epi32((r), -(c)), \
320  _mm_slli_epi32((r), 32-(-(c)))))
321 #endif
322 
323 #define BLAKE2S_G1(row1,row2,row3,row4,buf) \
324  row1 = _mm_add_epi32( _mm_add_epi32( row1, buf), row2 ); \
325  row4 = _mm_xor_si128( row4, row1 ); \
326  row4 = MM_ROTI_EPI32(row4, -16); \
327  row3 = _mm_add_epi32( row3, row4 ); \
328  row2 = _mm_xor_si128( row2, row3 ); \
329  row2 = MM_ROTI_EPI32(row2, -12);
330 
331 #define BLAKE2S_G2(row1,row2,row3,row4,buf) \
332  row1 = _mm_add_epi32( _mm_add_epi32( row1, buf), row2 ); \
333  row4 = _mm_xor_si128( row4, row1 ); \
334  row4 = MM_ROTI_EPI32(row4, -8); \
335  row3 = _mm_add_epi32( row3, row4 ); \
336  row2 = _mm_xor_si128( row2, row3 ); \
337  row2 = MM_ROTI_EPI32(row2, -7);
338 
339 #define DIAGONALIZE(row1,row2,row3,row4) \
340  row1 = _mm_shuffle_epi32( row1, _MM_SHUFFLE(2,1,0,3) ); \
341  row4 = _mm_shuffle_epi32( row4, _MM_SHUFFLE(1,0,3,2) ); \
342  row3 = _mm_shuffle_epi32( row3, _MM_SHUFFLE(0,3,2,1) );
343 
344 #define UNDIAGONALIZE(row1,row2,row3,row4) \
345  row1 = _mm_shuffle_epi32( row1, _MM_SHUFFLE(0,3,2,1) ); \
346  row4 = _mm_shuffle_epi32( row4, _MM_SHUFFLE(1,0,3,2) ); \
347  row3 = _mm_shuffle_epi32( row3, _MM_SHUFFLE(2,1,0,3) );
348 
349 #define BLAKE2S_ROUND(r) \
350  BLAKE2S_LOAD_MSG_ ##r ##_1(buf1); \
351  BLAKE2S_G1(row1,row2,row3,row4,buf1); \
352  BLAKE2S_LOAD_MSG_ ##r ##_2(buf2); \
353  BLAKE2S_G2(row1,row2,row3,row4,buf2); \
354  DIAGONALIZE(row1,row2,row3,row4); \
355  BLAKE2S_LOAD_MSG_ ##r ##_3(buf3); \
356  BLAKE2S_G1(row1,row2,row3,row4,buf3); \
357  BLAKE2S_LOAD_MSG_ ##r ##_4(buf4); \
358  BLAKE2S_G2(row1,row2,row3,row4,buf4); \
359  UNDIAGONALIZE(row1,row2,row3,row4);
360 
361  __m128i row1, row2, row3, row4;
362  __m128i buf1, buf2, buf3, buf4;
363  __m128i t0, t1, t2, ff0, ff1;
364 
365  const __m128i r8 = _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1);
366  const __m128i r16 = _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2);
367 
368  const __m128i m0 = LOADU(input + 00);
369  const __m128i m1 = LOADU(input + 16);
370  const __m128i m2 = LOADU(input + 32);
371  const __m128i m3 = LOADU(input + 48);
372 
373  row1 = ff0 = LOADU(state.h()+0);
374  row2 = ff1 = LOADU(state.h()+4);
375  row3 = LOADU(BLAKE2S_IV+0);
376  row4 = _mm_xor_si128(LOADU(BLAKE2S_IV+4), LOADU(state.t()+0));
377 
378  BLAKE2S_ROUND(0);
379  BLAKE2S_ROUND(1);
380  BLAKE2S_ROUND(2);
381  BLAKE2S_ROUND(3);
382  BLAKE2S_ROUND(4);
383  BLAKE2S_ROUND(5);
384  BLAKE2S_ROUND(6);
385  BLAKE2S_ROUND(7);
386  BLAKE2S_ROUND(8);
387  BLAKE2S_ROUND(9);
388 
389  STOREU(state.h()+0, _mm_xor_si128(ff0, _mm_xor_si128(row1, row3)));
390  STOREU(state.h()+4, _mm_xor_si128(ff1, _mm_xor_si128(row2, row4)));
391 }
392 #endif // CRYPTOPP_SSE41_AVAILABLE
393 
394 #if CRYPTOPP_ARM_NEON_AVAILABLE
395 void BLAKE2_Compress32_NEON(const byte* input, BLAKE2s_State& state)
396 {
397  #define BLAKE2S_LOAD_MSG_0_1(buf) \
398  do { uint32x2_t t0, t1; \
399  t0 = vzip_u32(vget_low_u32(m0), vget_high_u32(m0)).val[0]; \
400  t1 = vzip_u32(vget_low_u32(m1), vget_high_u32(m1)).val[0]; \
401  buf = vcombine_u32(t0, t1); } while(0)
402 
403  #define BLAKE2S_LOAD_MSG_0_2(buf) \
404  do { uint32x2_t t0, t1; \
405  t0 = vzip_u32(vget_low_u32(m0), vget_high_u32(m0)).val[1]; \
406  t1 = vzip_u32(vget_low_u32(m1), vget_high_u32(m1)).val[1]; \
407  buf = vcombine_u32(t0, t1); } while(0)
408 
409  #define BLAKE2S_LOAD_MSG_0_3(buf) \
410  do { uint32x2_t t0, t1; \
411  t0 = vzip_u32(vget_low_u32(m2), vget_high_u32(m2)).val[0]; \
412  t1 = vzip_u32(vget_low_u32(m3), vget_high_u32(m3)).val[0]; \
413  buf = vcombine_u32(t0, t1); } while(0)
414 
415  #define BLAKE2S_LOAD_MSG_0_4(buf) \
416  do { uint32x2_t t0, t1; \
417  t0 = vzip_u32(vget_low_u32(m2), vget_high_u32(m2)).val[1]; \
418  t1 = vzip_u32(vget_low_u32(m3), vget_high_u32(m3)).val[1]; \
419  buf = vcombine_u32(t0, t1); } while(0)
420 
421  #define BLAKE2S_LOAD_MSG_1_1(buf) \
422  do { uint32x2_t t0, t1; \
423  t0 = vzip_u32(vget_high_u32(m3), vget_low_u32(m1)).val[0]; \
424  t1 = vzip_u32(vget_low_u32(m2), vget_low_u32(m3)).val[1]; \
425  buf = vcombine_u32(t0, t1); } while(0)
426 
427  #define BLAKE2S_LOAD_MSG_1_2(buf) \
428  do { uint32x2_t t0, t1; \
429  t0 = vzip_u32(vget_high_u32(m2), vget_low_u32(m2)).val[0]; \
430  t1 = vext_u32(vget_high_u32(m3), vget_high_u32(m1), 1); \
431  buf = vcombine_u32(t0, t1); } while(0)
432 
433  #define BLAKE2S_LOAD_MSG_1_3(buf) \
434  do { uint32x2_t t0, t1; \
435  t0 = vext_u32(vget_low_u32(m0), vget_low_u32(m0), 1); \
436  t1 = vzip_u32(vget_high_u32(m2), vget_low_u32(m1)).val[1]; \
437  buf = vcombine_u32(t0, t1); } while(0)
438 
439  #define BLAKE2S_LOAD_MSG_1_4(buf) \
440  do { uint32x2_t t0, t1; \
441  t0 = vzip_u32(vget_low_u32(m3), vget_high_u32(m0)).val[0]; \
442  t1 = vzip_u32(vget_high_u32(m1), vget_high_u32(m0)).val[1]; \
443  buf = vcombine_u32(t0, t1); } while(0)
444 
445  #define BLAKE2S_LOAD_MSG_2_1(buf) \
446  do { uint32x2_t t0, t1; \
447  t0 = vext_u32(vget_high_u32(m2), vget_low_u32(m3), 1); \
448  t1 = vzip_u32(vget_low_u32(m1), vget_high_u32(m3)).val[1]; \
449  buf = vcombine_u32(t0, t1); } while(0)
450 
451  #define BLAKE2S_LOAD_MSG_2_2(buf) \
452  do { uint32x2_t t0, t1; \
453  t0 = vzip_u32(vget_low_u32(m2), vget_low_u32(m0)).val[0]; \
454  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m0), vget_low_u32(m3)); \
455  buf = vcombine_u32(t0, t1); } while(0)
456 
457  #define BLAKE2S_LOAD_MSG_2_3(buf) \
458  do { uint32x2_t t0, t1; \
459  t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m2), vget_high_u32(m0)); \
460  t1 = vzip_u32(vget_high_u32(m1), vget_low_u32(m2)).val[1]; \
461  buf = vcombine_u32(t0, t1); } while(0)
462 
463  #define BLAKE2S_LOAD_MSG_2_4(buf) \
464  do { uint32x2_t t0, t1; \
465  t0 = vzip_u32(vget_high_u32(m3), vget_high_u32(m1)).val[0]; \
466  t1 = vext_u32(vget_low_u32(m0), vget_low_u32(m1), 1); \
467  buf = vcombine_u32(t0, t1); } while(0)
468 
469  #define BLAKE2S_LOAD_MSG_3_1(buf) \
470  do { uint32x2_t t0, t1; \
471  t0 = vzip_u32(vget_high_u32(m1), vget_high_u32(m0)).val[1]; \
472  t1 = vzip_u32(vget_low_u32(m3), vget_high_u32(m2)).val[1]; \
473  buf = vcombine_u32(t0, t1); } while(0)
474 
475  #define BLAKE2S_LOAD_MSG_3_2(buf) \
476  do { uint32x2_t t0, t1; \
477  t0 = vzip_u32(vget_low_u32(m2), vget_low_u32(m0)).val[1]; \
478  t1 = vzip_u32(vget_low_u32(m3), vget_high_u32(m3)).val[0]; \
479  buf = vcombine_u32(t0, t1); } while(0)
480 
481  #define BLAKE2S_LOAD_MSG_3_3(buf) \
482  do { uint32x2_t t0, t1; \
483  t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m0), vget_low_u32(m1)); \
484  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m1), vget_high_u32(m3)); \
485  buf = vcombine_u32(t0, t1); } while(0)
486 
487  #define BLAKE2S_LOAD_MSG_3_4(buf) \
488  do { uint32x2_t t0, t1; \
489  t0 = vzip_u32(vget_high_u32(m1), vget_high_u32(m2)).val[0]; \
490  t1 = vzip_u32(vget_low_u32(m0), vget_low_u32(m2)).val[0]; \
491  buf = vcombine_u32(t0, t1); } while(0)
492 
493  #define BLAKE2S_LOAD_MSG_4_1(buf) \
494  do { uint32x2_t t0, t1; \
495  t0 = vzip_u32(vget_low_u32(m2), vget_low_u32(m1)).val[1]; \
496  t1 = vzip_u32((vget_high_u32(m0)), vget_high_u32(m2)).val[0]; \
497  buf = vcombine_u32(t0, t1); } while(0)
498 
499  #define BLAKE2S_LOAD_MSG_4_2(buf) \
500  do { uint32x2_t t0, t1; \
501  t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m0), vget_high_u32(m1)); \
502  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m1), vget_high_u32(m3)); \
503  buf = vcombine_u32(t0, t1); } while(0)
504 
505  #define BLAKE2S_LOAD_MSG_4_3(buf) \
506  do { uint32x2_t t0, t1; \
507  t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m3), vget_high_u32(m2)); \
508  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m1), vget_high_u32(m0)); \
509  buf = vcombine_u32(t0, t1); } while(0)
510 
511  #define BLAKE2S_LOAD_MSG_4_4(buf) \
512  do { uint32x2_t t0, t1; \
513  t0 = vext_u32(vget_low_u32(m0), vget_low_u32(m3), 1); \
514  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m2), vget_low_u32(m3)); \
515  buf = vcombine_u32(t0, t1); } while(0)
516 
517  #define BLAKE2S_LOAD_MSG_5_1(buf) \
518  do { uint32x2_t t0, t1; \
519  t0 = vzip_u32((vget_high_u32(m0)), vget_high_u32(m1)).val[0]; \
520  t1 = vzip_u32(vget_low_u32(m0), vget_low_u32(m2)).val[0]; \
521  buf = vcombine_u32(t0, t1); } while(0)
522 
523  #define BLAKE2S_LOAD_MSG_5_2(buf) \
524  do { uint32x2_t t0, t1; \
525  t0 = vzip_u32(vget_low_u32(m3), vget_high_u32(m2)).val[0]; \
526  t1 = vzip_u32(vget_high_u32(m2), vget_high_u32(m0)).val[1]; \
527  buf = vcombine_u32(t0, t1); } while(0)
528 
529  #define BLAKE2S_LOAD_MSG_5_3(buf) \
530  do { uint32x2_t t0, t1; \
531  t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m1), vget_high_u32(m1)); \
532  t1 = vzip_u32(vget_high_u32(m3), vget_low_u32(m0)).val[1]; \
533  buf = vcombine_u32(t0, t1); } while(0)
534 
535  #define BLAKE2S_LOAD_MSG_5_4(buf) \
536  do { uint32x2_t t0, t1; \
537  t0 = vzip_u32(vget_low_u32(m3), vget_low_u32(m1)).val[1]; \
538  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m3), vget_low_u32(m2)); \
539  buf = vcombine_u32(t0, t1); } while(0)
540 
541  #define BLAKE2S_LOAD_MSG_6_1(buf) \
542  do { uint32x2_t t0, t1; \
543  t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m3), vget_low_u32(m0)); \
544  t1 = vzip_u32(vget_high_u32(m3), vget_low_u32(m1)).val[0]; \
545  buf = vcombine_u32(t0, t1); } while(0)
546 
547  #define BLAKE2S_LOAD_MSG_6_2(buf) \
548  do { uint32x2_t t0, t1; \
549  t0 = vzip_u32(vget_low_u32(m1), vget_high_u32(m3)).val[1]; \
550  t1 = vext_u32(vget_low_u32(m3), vget_high_u32(m2), 1); \
551  buf = vcombine_u32(t0, t1); } while(0)
552 
553  #define BLAKE2S_LOAD_MSG_6_3(buf) \
554  do { uint32x2_t t0, t1; \
555  t0 = vzip_u32(vget_low_u32(m0), vget_high_u32(m1)).val[0]; \
556  t1 = vext_u32(vget_low_u32(m2), vget_low_u32(m2), 1); \
557  buf = vcombine_u32(t0, t1); } while(0)
558 
559  #define BLAKE2S_LOAD_MSG_6_4(buf) \
560  do { uint32x2_t t0, t1; \
561  t0 = vzip_u32(vget_high_u32(m1), vget_high_u32(m0)).val[1]; \
562  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m0), vget_high_u32(m2)); \
563  buf = vcombine_u32(t0, t1); } while(0)
564 
565  #define BLAKE2S_LOAD_MSG_7_1(buf) \
566  do { uint32x2_t t0, t1; \
567  t0 = vzip_u32(vget_low_u32(m3), vget_high_u32(m1)).val[1]; \
568  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m3), vget_high_u32(m0)); \
569  buf = vcombine_u32(t0, t1); } while(0)
570 
571  #define BLAKE2S_LOAD_MSG_7_2(buf) \
572  do { uint32x2_t t0, t1; \
573  t0 = vext_u32(vget_high_u32(m2), vget_high_u32(m3), 1); \
574  t1 = vzip_u32(vget_low_u32(m0), vget_low_u32(m2)).val[1]; \
575  buf = vcombine_u32(t0, t1); } while(0)
576 
577  #define BLAKE2S_LOAD_MSG_7_3(buf) \
578  do { uint32x2_t t0, t1; \
579  t0 = vzip_u32(vget_low_u32(m1), vget_high_u32(m3)).val[1]; \
580  t1 = vzip_u32(vget_low_u32(m2), vget_high_u32(m0)).val[0]; \
581  buf = vcombine_u32(t0, t1); } while(0)
582 
583  #define BLAKE2S_LOAD_MSG_7_4(buf) \
584  do { uint32x2_t t0, t1; \
585  t0 = vzip_u32(vget_low_u32(m0), vget_low_u32(m1)).val[0]; \
586  t1 = vzip_u32(vget_high_u32(m1), vget_high_u32(m2)).val[0]; \
587  buf = vcombine_u32(t0, t1); } while(0)
588 
589  #define BLAKE2S_LOAD_MSG_8_1(buf) \
590  do { uint32x2_t t0, t1; \
591  t0 = vzip_u32(vget_high_u32(m1), vget_high_u32(m3)).val[0]; \
592  t1 = vext_u32(vget_high_u32(m2), vget_low_u32(m0), 1); \
593  buf = vcombine_u32(t0, t1); } while(0)
594 
595  #define BLAKE2S_LOAD_MSG_8_2(buf) \
596  do { uint32x2_t t0, t1; \
597  t0 = vzip_u32(vget_high_u32(m3), vget_low_u32(m2)).val[1]; \
598  t1 = vext_u32(vget_high_u32(m0), vget_low_u32(m2), 1); \
599  buf = vcombine_u32(t0, t1); } while(0)
600 
601  #define BLAKE2S_LOAD_MSG_8_3(buf) \
602  do { uint32x2_t t0, t1; \
603  t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m3), vget_low_u32(m3)); \
604  t1 = vext_u32(vget_low_u32(m0), vget_high_u32(m2), 1); \
605  buf = vcombine_u32(t0, t1); } while(0)
606 
607  #define BLAKE2S_LOAD_MSG_8_4(buf) \
608  do { uint32x2_t t0, t1; \
609  t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m0), vget_high_u32(m1)); \
610  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m1), vget_low_u32(m1)); \
611  buf = vcombine_u32(t0, t1); } while(0)
612 
613  #define BLAKE2S_LOAD_MSG_9_1(buf) \
614  do { uint32x2_t t0, t1; \
615  t0 = vzip_u32(vget_high_u32(m2), vget_low_u32(m2)).val[0]; \
616  t1 = vzip_u32(vget_high_u32(m1), vget_low_u32(m0)).val[1]; \
617  buf = vcombine_u32(t0, t1); } while(0)
618 
619  #define BLAKE2S_LOAD_MSG_9_2(buf) \
620  do { uint32x2_t t0, t1; \
621  t0 = vzip_u32((vget_high_u32(m0)), vget_low_u32(m1)).val[0]; \
622  t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m1), vget_low_u32(m1)); \
623  buf = vcombine_u32(t0, t1); } while(0)
624 
625  #define BLAKE2S_LOAD_MSG_9_3(buf) \
626  do { uint32x2_t t0, t1; \
627  t0 = vzip_u32(vget_high_u32(m3), vget_low_u32(m2)).val[1]; \
628  t1 = vzip_u32((vget_high_u32(m0)), vget_low_u32(m3)).val[1]; \
629  buf = vcombine_u32(t0, t1); } while(0)
630 
631  #define BLAKE2S_LOAD_MSG_9_4(buf) \
632  do { uint32x2_t t0, t1; \
633  t0 = vext_u32(vget_high_u32(m2), vget_high_u32(m3), 1); \
634  t1 = vzip_u32(vget_low_u32(m3), vget_low_u32(m0)).val[0]; \
635  buf = vcombine_u32(t0, t1); } while(0)
636 
637  #define vrorq_n_u32_16(x) vreinterpretq_u32_u16(vrev32q_u16(vreinterpretq_u16_u32(x)))
638 
639  #define vrorq_n_u32_8(x) vsriq_n_u32(vshlq_n_u32((x), 24), (x), 8)
640 
641  #define vrorq_n_u32(x, c) vsriq_n_u32(vshlq_n_u32((x), 32-(c)), (x), (c))
642 
643  #define BLAKE2S_G1(row1,row2,row3,row4,buf) \
644  do { \
645  row1 = vaddq_u32(vaddq_u32(row1, buf), row2); row4 = veorq_u32(row4, row1); \
646  row4 = vrorq_n_u32_16(row4); row3 = vaddq_u32(row3, row4); \
647  row2 = veorq_u32(row2, row3); row2 = vrorq_n_u32(row2, 12); \
648  } while(0)
649 
650  #define BLAKE2S_G2(row1,row2,row3,row4,buf) \
651  do { \
652  row1 = vaddq_u32(vaddq_u32(row1, buf), row2); row4 = veorq_u32(row4, row1); \
653  row4 = vrorq_n_u32_8(row4); row3 = vaddq_u32(row3, row4); \
654  row2 = veorq_u32(row2, row3); row2 = vrorq_n_u32(row2, 7); \
655  } while(0)
656 
657  #define BLAKE2S_DIAGONALIZE(row1,row2,row3,row4) \
658  do { \
659  row4 = vextq_u32(row4, row4, 3); row3 = vextq_u32(row3, row3, 2); row2 = vextq_u32(row2, row2, 1); \
660  } while(0)
661 
662  #define BLAKE2S_UNDIAGONALIZE(row1,row2,row3,row4) \
663  do { \
664  row4 = vextq_u32(row4, row4, 1); \
665  row3 = vextq_u32(row3, row3, 2); \
666  row2 = vextq_u32(row2, row2, 3); \
667  } while(0)
668 
669  #define BLAKE2S_ROUND(r) \
670  do { \
671  uint32x4_t buf1, buf2, buf3, buf4; \
672  BLAKE2S_LOAD_MSG_ ##r ##_1(buf1); \
673  BLAKE2S_G1(row1,row2,row3,row4,buf1); \
674  BLAKE2S_LOAD_MSG_ ##r ##_2(buf2); \
675  BLAKE2S_G2(row1,row2,row3,row4,buf2); \
676  BLAKE2S_DIAGONALIZE(row1,row2,row3,row4); \
677  BLAKE2S_LOAD_MSG_ ##r ##_3(buf3); \
678  BLAKE2S_G1(row1,row2,row3,row4,buf3); \
679  BLAKE2S_LOAD_MSG_ ##r ##_4(buf4); \
680  BLAKE2S_G2(row1,row2,row3,row4,buf4); \
681  BLAKE2S_UNDIAGONALIZE(row1,row2,row3,row4); \
682  } while(0)
683 
684  const uint32x4_t m0 = vreinterpretq_u32_u8(vld1q_u8(input + 00));
685  const uint32x4_t m1 = vreinterpretq_u32_u8(vld1q_u8(input + 16));
686  const uint32x4_t m2 = vreinterpretq_u32_u8(vld1q_u8(input + 32));
687  const uint32x4_t m3 = vreinterpretq_u32_u8(vld1q_u8(input + 48));
688 
689  uint32x4_t row1, row2, row3, row4;
690 
691  const uint32x4_t f0 = row1 = vld1q_u32(state.h()+0);
692  const uint32x4_t f1 = row2 = vld1q_u32(state.h()+4);
693  row3 = vld1q_u32(BLAKE2S_IV+0);
694  row4 = veorq_u32(vld1q_u32(BLAKE2S_IV+4), vld1q_u32(state.t()+0));
695 
696  BLAKE2S_ROUND(0);
697  BLAKE2S_ROUND(1);
698  BLAKE2S_ROUND(2);
699  BLAKE2S_ROUND(3);
700  BLAKE2S_ROUND(4);
701  BLAKE2S_ROUND(5);
702  BLAKE2S_ROUND(6);
703  BLAKE2S_ROUND(7);
704  BLAKE2S_ROUND(8);
705  BLAKE2S_ROUND(9);
706 
707  vst1q_u32(state.h()+0, veorq_u32(f0, veorq_u32(row1, row3)));
708  vst1q_u32(state.h()+4, veorq_u32(f1, veorq_u32(row2, row4)));
709 }
710 #endif // CRYPTOPP_ARM_NEON_AVAILABLE
711 
712 #if (CRYPTOPP_ALTIVEC_AVAILABLE)
713 
714 template <class T>
715 inline uint32x4_p VecLoad32(const T* p)
716 {
717  return VecLoad(p);
718 }
719 
720 template <class T>
721 inline uint32x4_p VecLoad32LE(const T* p, const uint8x16_p le_mask)
722 {
723 #if defined(CRYPTOPP_BIG_ENDIAN)
724  const uint32x4_p v = VecLoad(p);
725  return VecPermute(v, v, le_mask);
726 #else
727  CRYPTOPP_UNUSED(le_mask);
728  return VecLoad(p);
729 #endif
730 }
731 
732 template <class T>
733 inline void VecStore32(T* p, const uint32x4_p x)
734 {
735  VecStore(x, p);
736 }
737 
738 template <class T>
739 inline void VecStore32LE(T* p, const uint32x4_p x, const uint8x16_p le_mask)
740 {
741 #if defined(CRYPTOPP_BIG_ENDIAN)
742  const uint32x4_p v = VecPermute(x, x, le_mask);
743  VecStore(v, p);
744 #else
745  CRYPTOPP_UNUSED(le_mask);
746  VecStore(x, p);
747 #endif
748 }
749 
750 template <unsigned int E1, unsigned int E2>
751 inline uint32x4_p VectorSet32(const uint32x4_p a, const uint32x4_p b)
752 {
753  // Re-index. I'd like to use something like Z=Y*4 and then
754  // VecShiftLeftOctet<Z>(b) but it crashes early Red Hat
755  // GCC compilers.
756  enum {X=E1&3, Y=E2&3};
757 
758  // Don't care element
759  const unsigned int DC = 31;
760 
761  // Element 0 combinations
762  if (X == 0 && Y == 0)
763  {
764  const uint8x16_p mask = {0,1,2,3, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
765  return VecPermute(a, b, mask);
766  }
767  else if (X == 0 && Y == 1)
768  {
769  const uint8x16_p mask = {0,1,2,3, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
770  return VecPermute(a, VecShiftLeftOctet<4>(b), mask);
771  }
772  else if (X == 0 && Y == 2)
773  {
774  const uint8x16_p mask = {0,1,2,3, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
775  return VecPermute(a, VecShiftLeftOctet<8>(b), mask);
776  }
777  else if (X == 0 && Y == 3)
778  {
779  const uint8x16_p mask = {0,1,2,3, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
780  return VecPermute(a, VecShiftLeftOctet<12>(b), mask);
781  }
782 
783  // Element 1 combinations
784  else if (X == 1 && Y == 0)
785  {
786  const uint8x16_p mask = {4,5,6,7, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
787  return VecPermute(a, b, mask);
788  }
789  else if (X == 1 && Y == 1)
790  {
791  const uint8x16_p mask = {4,5,6,7, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
792  return VecPermute(a, VecShiftLeftOctet<4>(b), mask);
793  }
794  else if (X == 1 && Y == 2)
795  {
796  const uint8x16_p mask = {4,5,6,7, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
797  return VecPermute(a, VecShiftLeftOctet<8>(b), mask);
798  }
799  else if (X == 1 && Y == 3)
800  {
801  const uint8x16_p mask = {4,5,6,7, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
802  return VecPermute(a, VecShiftLeftOctet<12>(b), mask);
803  }
804 
805  // Element 2 combinations
806  else if (X == 2 && Y == 0)
807  {
808  const uint8x16_p mask = {8,9,10,11, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
809  return VecPermute(a, b, mask);
810  }
811  else if (X == 2 && Y == 1)
812  {
813  const uint8x16_p mask = {8,9,10,11, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
814  return VecPermute(a, VecShiftLeftOctet<4>(b), mask);
815  }
816  else if (X == 2 && Y == 2)
817  {
818  const uint8x16_p mask = {8,9,10,11, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
819  return VecPermute(a, VecShiftLeftOctet<8>(b), mask);
820  }
821  else if (X == 2 && Y == 3)
822  {
823  const uint8x16_p mask = {8,9,10,11, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
824  return VecPermute(a, VecShiftLeftOctet<12>(b), mask);
825  }
826 
827  // Element 3 combinations
828  else if (X == 3 && Y == 0)
829  {
830  const uint8x16_p mask = {12,13,14,15, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
831  return VecPermute(a, b, mask);
832  }
833  else if (X == 3 && Y == 1)
834  {
835  const uint8x16_p mask = {12,13,14,15, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
836  return VecPermute(a, VecShiftLeftOctet<4>(b), mask);
837  }
838  else if (X == 3 && Y == 2)
839  {
840  const uint8x16_p mask = {12,13,14,15, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
841  return VecPermute(a, VecShiftLeftOctet<8>(b), mask);
842  }
843  else if (X == 3 && Y == 3)
844  {
845  const uint8x16_p mask = {12,13,14,15, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC};
846  return VecPermute(a, VecShiftLeftOctet<12>(b), mask);
847  }
848 
849  // Quiet IBM XLC warning
850  return VecXor(a, a);
851 }
852 
853 template <unsigned int E1, unsigned int E2, unsigned int E3, unsigned int E4>
854 inline uint32x4_p VectorSet32(const uint32x4_p a, const uint32x4_p b,
855  const uint32x4_p c, const uint32x4_p d)
856 {
857  // Re-index
858  enum {W=E1&3, X=E2&3, Y=E3&3, Z=E4&3};
859 
860  const uint32x4_p t0 = VectorSet32<W,X>(a, b);
861  const uint32x4_p t1 = VectorSet32<Y,Z>(c, d);
862 
863  // PowerPC follows SSE2's implementation, and this is _mm_set_epi32.
864  const uint8x16_p mask = {20,21,22,23, 16,17,18,19, 4,5,6,7, 0,1,2,3};
865  return VecPermute(t0, t1, mask);
866 }
867 
868 template<>
869 uint32x4_p VectorSet32<2,0,2,0>(const uint32x4_p a, const uint32x4_p b,
870  const uint32x4_p c, const uint32x4_p d)
871 {
872  // a=b, c=d, mask is {2,0, 2,0}
873  CRYPTOPP_UNUSED(b); CRYPTOPP_UNUSED(d);
874  const uint8x16_p mask = {16,17,18,19, 24,25,26,27, 0,1,2,3, 8,9,10,11};
875  return VecPermute(a, c, mask);
876 }
877 
878 template<>
879 uint32x4_p VectorSet32<3,1,3,1>(const uint32x4_p a, const uint32x4_p b,
880  const uint32x4_p c, const uint32x4_p d)
881 {
882  // a=b, c=d, mask is {3,1, 3,1}
883  CRYPTOPP_UNUSED(b); CRYPTOPP_UNUSED(d);
884  const uint8x16_p mask = {20,21,22,23, 28,29,30,31, 4,5,6,7, 12,13,14,15};
885  return VecPermute(a, c, mask);
886 }
887 
888 void BLAKE2_Compress32_ALTIVEC(const byte* input, BLAKE2s_State& state)
889 {
890  # define m1 m0
891  # define m2 m0
892  # define m3 m0
893 
894  # define m5 m4
895  # define m6 m4
896  # define m7 m4
897 
898  # define m9 m8
899  # define m10 m8
900  # define m11 m8
901 
902  # define m13 m12
903  # define m14 m12
904  # define m15 m12
905 
906  // #define BLAKE2S_LOAD_MSG_0_1(buf) buf = VectorSet32<6,4,2,0>(m6,m4,m2,m0);
907  #define BLAKE2S_LOAD_MSG_0_1(buf) buf = VectorSet32<2,0,2,0>(m6,m4,m2,m0);
908  // #define BLAKE2S_LOAD_MSG_0_2(buf) buf = VectorSet32<7,5,3,1>(m7,m5,m3,m1);
909  #define BLAKE2S_LOAD_MSG_0_2(buf) buf = VectorSet32<3,1,3,1>(m7,m5,m3,m1);
910  // #define BLAKE2S_LOAD_MSG_0_3(buf) buf = VectorSet32<14,12,10,8>(m14,m12,m10,m8);
911  #define BLAKE2S_LOAD_MSG_0_3(buf) buf = VectorSet32<2,0,2,0>(m14,m12,m10,m8);
912  // #define BLAKE2S_LOAD_MSG_0_4(buf) buf = VectorSet32<15,13,11,9>(m15,m13,m11,m9);
913  #define BLAKE2S_LOAD_MSG_0_4(buf) buf = VectorSet32<3,1,3,1>(m15,m13,m11,m9);
914 
915  #define BLAKE2S_LOAD_MSG_1_1(buf) buf = VectorSet32<13,9,4,14>(m13,m9,m4,m14);
916  #define BLAKE2S_LOAD_MSG_1_2(buf) buf = VectorSet32<6,15,8,10>(m6,m15,m8,m10)
917  #define BLAKE2S_LOAD_MSG_1_3(buf) buf = VectorSet32<5,11,0,1>(m5,m11,m0,m1)
918  #define BLAKE2S_LOAD_MSG_1_4(buf) buf = VectorSet32<3,7,2,12>(m3,m7,m2,m12)
919 
920  #define BLAKE2S_LOAD_MSG_2_1(buf) buf = VectorSet32<15,5,12,11>(m15,m5,m12,m11)
921  #define BLAKE2S_LOAD_MSG_2_2(buf) buf = VectorSet32<13,2,0,8>(m13,m2,m0,m8)
922  #define BLAKE2S_LOAD_MSG_2_3(buf) buf = VectorSet32<9,7,3,10>(m9,m7,m3,m10)
923  #define BLAKE2S_LOAD_MSG_2_4(buf) buf = VectorSet32<4,1,6,14>(m4,m1,m6,m14)
924 
925  #define BLAKE2S_LOAD_MSG_3_1(buf) buf = VectorSet32<11,13,3,7>(m11,m13,m3,m7)
926  #define BLAKE2S_LOAD_MSG_3_2(buf) buf = VectorSet32<14,12,1,9>(m14,m12,m1,m9)
927  #define BLAKE2S_LOAD_MSG_3_3(buf) buf = VectorSet32<15,4,5,2>(m15,m4,m5,m2)
928  #define BLAKE2S_LOAD_MSG_3_4(buf) buf = VectorSet32<8,0,10,6>(m8,m0,m10,m6)
929 
930  #define BLAKE2S_LOAD_MSG_4_1(buf) buf = VectorSet32<10,2,5,9>(m10,m2,m5,m9)
931  #define BLAKE2S_LOAD_MSG_4_2(buf) buf = VectorSet32<15,4,7,0>(m15,m4,m7,m0)
932  #define BLAKE2S_LOAD_MSG_4_3(buf) buf = VectorSet32<3,6,11,14>(m3,m6,m11,m14)
933  #define BLAKE2S_LOAD_MSG_4_4(buf) buf = VectorSet32<13,8,12,1>(m13,m8,m12,m1)
934 
935  #define BLAKE2S_LOAD_MSG_5_1(buf) buf = VectorSet32<8,0,6,2>(m8,m0,m6,m2)
936  #define BLAKE2S_LOAD_MSG_5_2(buf) buf = VectorSet32<3,11,10,12>(m3,m11,m10,m12)
937  #define BLAKE2S_LOAD_MSG_5_3(buf) buf = VectorSet32<1,15,7,4>(m1,m15,m7,m4)
938  #define BLAKE2S_LOAD_MSG_5_4(buf) buf = VectorSet32<9,14,5,13>(m9,m14,m5,m13)
939 
940  #define BLAKE2S_LOAD_MSG_6_1(buf) buf = VectorSet32<4,14,1,12>(m4,m14,m1,m12)
941  #define BLAKE2S_LOAD_MSG_6_2(buf) buf = VectorSet32<10,13,15,5>(m10,m13,m15,m5)
942  #define BLAKE2S_LOAD_MSG_6_3(buf) buf = VectorSet32<8,9,6,0>(m8,m9,m6,m0)
943  #define BLAKE2S_LOAD_MSG_6_4(buf) buf = VectorSet32<11,2,3,7>(m11,m2,m3,m7)
944 
945  #define BLAKE2S_LOAD_MSG_7_1(buf) buf = VectorSet32<3,12,7,13>(m3,m12,m7,m13)
946  #define BLAKE2S_LOAD_MSG_7_2(buf) buf = VectorSet32<9,1,14,11>(m9,m1,m14,m11)
947  #define BLAKE2S_LOAD_MSG_7_3(buf) buf = VectorSet32<2,8,15,5>(m2,m8,m15,m5)
948  #define BLAKE2S_LOAD_MSG_7_4(buf) buf = VectorSet32<10,6,4,0>(m10,m6,m4,m0)
949 
950  #define BLAKE2S_LOAD_MSG_8_1(buf) buf = VectorSet32<0,11,14,6>(m0,m11,m14,m6)
951  #define BLAKE2S_LOAD_MSG_8_2(buf) buf = VectorSet32<8,3,9,15>(m8,m3,m9,m15)
952  #define BLAKE2S_LOAD_MSG_8_3(buf) buf = VectorSet32<10,1,13,12>(m10,m1,m13,m12)
953  #define BLAKE2S_LOAD_MSG_8_4(buf) buf = VectorSet32<5,4,7,2>(m5,m4,m7,m2)
954 
955  #define BLAKE2S_LOAD_MSG_9_1(buf) buf = VectorSet32<1,7,8,10>(m1,m7,m8,m10)
956  #define BLAKE2S_LOAD_MSG_9_2(buf) buf = VectorSet32<5,6,4,2>(m5,m6,m4,m2)
957  #define BLAKE2S_LOAD_MSG_9_3(buf) buf = VectorSet32<13,3,9,15>(m13,m3,m9,m15)
958  #define BLAKE2S_LOAD_MSG_9_4(buf) buf = VectorSet32<0,12,14,11>(m0,m12,m14,m11)
959 
960  #define vec_ror_16(x) VecRotateRight<16>(x)
961  #define vec_ror_12(x) VecRotateRight<12>(x)
962  #define vec_ror_8(x) VecRotateRight<8>(x)
963  #define vec_ror_7(x) VecRotateRight<7>(x)
964 
965  #define BLAKE2S_G1(row1,row2,row3,row4,buf) \
966  row1 = VecAdd(VecAdd(row1, buf), row2); \
967  row4 = VecXor(row4, row1); \
968  row4 = vec_ror_16(row4); \
969  row3 = VecAdd(row3, row4); \
970  row2 = VecXor(row2, row3); \
971  row2 = vec_ror_12(row2);
972 
973  #define BLAKE2S_G2(row1,row2,row3,row4,buf) \
974  row1 = VecAdd(VecAdd(row1, buf), row2); \
975  row4 = VecXor(row4, row1); \
976  row4 = vec_ror_8(row4); \
977  row3 = VecAdd(row3, row4); \
978  row2 = VecXor(row2, row3); \
979  row2 = vec_ror_7(row2);
980 
981  const uint8x16_p D2103_MASK = {12,13,14,15, 0,1,2,3, 4,5,6,7, 8,9,10,11};
982  const uint8x16_p D1032_MASK = {8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7};
983  const uint8x16_p D0321_MASK = {4,5,6,7, 8,9,10,11, 12,13,14,15, 0,1,2,3};
984 
985  #define BLAKE2S_DIAGONALIZE(row1,row2,row3,row4) \
986  row4 = VecPermute(row4, row4, D2103_MASK); \
987  row3 = VecPermute(row3, row3, D1032_MASK); \
988  row2 = VecPermute(row2, row2, D0321_MASK);
989 
990  #define BLAKE2S_UNDIAGONALIZE(row1,row2,row3,row4) \
991  row4 = VecPermute(row4, row4, D0321_MASK); \
992  row3 = VecPermute(row3, row3, D1032_MASK); \
993  row2 = VecPermute(row2, row2, D2103_MASK);
994 
995  #define BLAKE2S_ROUND(r) \
996  BLAKE2S_LOAD_MSG_ ##r ##_1(buf1); \
997  BLAKE2S_G1(row1,row2,row3,row4,buf1); \
998  BLAKE2S_LOAD_MSG_ ##r ##_2(buf2); \
999  BLAKE2S_G2(row1,row2,row3,row4,buf2); \
1000  BLAKE2S_DIAGONALIZE(row1,row2,row3,row4); \
1001  BLAKE2S_LOAD_MSG_ ##r ##_3(buf3); \
1002  BLAKE2S_G1(row1,row2,row3,row4,buf3); \
1003  BLAKE2S_LOAD_MSG_ ##r ##_4(buf4); \
1004  BLAKE2S_G2(row1,row2,row3,row4,buf4); \
1005  BLAKE2S_UNDIAGONALIZE(row1,row2,row3,row4);
1006 
1007  // Possibly unaligned user messages
1008  uint32x4_p m0, m4, m8, m12;
1009  // Endian conversion mask
1010  const uint8x16_p le_mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};
1011 
1012 #if defined(_ARCH_PWR9)
1013  // POWER9 provides loads for char's and short's
1014  m0 = (uint32x4_p) vec_xl( 0, CONST_V8_CAST( input ));
1015  m4 = (uint32x4_p) vec_xl( 16, CONST_V8_CAST( input ));
1016  m8 = (uint32x4_p) vec_xl( 32, CONST_V8_CAST( input ));
1017  m12 = (uint32x4_p) vec_xl( 48, CONST_V8_CAST( input ));
1018 
1019 # if defined(CRYPTOPP_BIG_ENDIAN)
1020  m0 = vec_perm(m0, m0, le_mask);
1021  m4 = vec_perm(m4, m4, le_mask);
1022  m8 = vec_perm(m8, m8, le_mask);
1023  m12 = vec_perm(m12, m12, le_mask);
1024 # endif
1025 #else
1026  // Altivec only provides 16-byte aligned loads
1027  // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
1028  m0 = (uint32x4_p) vec_ld( 0, CONST_V8_CAST( input ));
1029  m4 = (uint32x4_p) vec_ld( 16, CONST_V8_CAST( input ));
1030  m8 = (uint32x4_p) vec_ld( 32, CONST_V8_CAST( input ));
1031  m12 = (uint32x4_p) vec_ld( 48, CONST_V8_CAST( input ));
1032 
1033  // Alignment check for load of the message buffer
1034  const uintptr_t addr = (uintptr_t)input;
1035  if (addr%16 == 0)
1036  {
1037  // Already aligned. Perform a little-endian swap as required
1038 # if defined(CRYPTOPP_BIG_ENDIAN)
1039  m0 = vec_perm(m0, m0, le_mask);
1040  m4 = vec_perm(m4, m4, le_mask);
1041  m8 = vec_perm(m8, m8, le_mask);
1042  m12 = vec_perm(m12, m12, le_mask);
1043 # endif
1044  }
1045  else
1046  {
1047  // Not aligned. Fix vectors and perform a little-endian swap as required
1048  // http://mirror.informatimago.com/next/developer.apple.com/
1049  // hardwaredrivers/ve/code_optimization.html
1050  uint32x4_p ex; uint8x16_p perm;
1051  ex = (uint32x4_p) vec_ld(48+15, CONST_V8_CAST( input ));
1052  perm = vec_lvsl(0, CONST_V8_CAST( addr ));
1053 
1054 # if defined(CRYPTOPP_BIG_ENDIAN)
1055  // Combine the vector permute with the little-endian swap
1056  perm = vec_perm(perm, perm, le_mask);
1057 # endif
1058 
1059  m0 = vec_perm(m0, m4, perm);
1060  m4 = vec_perm(m4, m8, perm);
1061  m8 = vec_perm(m8, m12, perm);
1062  m12 = vec_perm(m12, ex, perm);
1063  }
1064 #endif
1065 
1066  uint32x4_p row1, row2, row3, row4;
1067  uint32x4_p buf1, buf2, buf3, buf4;
1068  uint32x4_p ff0, ff1;
1069 
1070  row1 = ff0 = VecLoad32LE(state.h()+0, le_mask);
1071  row2 = ff1 = VecLoad32LE(state.h()+4, le_mask);
1072  row3 = VecLoad32(BLAKE2S_IV+0);
1073  row4 = VecXor(VecLoad32(BLAKE2S_IV+4), VecLoad32(state.t()+0));
1074 
1075  BLAKE2S_ROUND(0);
1076  BLAKE2S_ROUND(1);
1077  BLAKE2S_ROUND(2);
1078  BLAKE2S_ROUND(3);
1079  BLAKE2S_ROUND(4);
1080  BLAKE2S_ROUND(5);
1081  BLAKE2S_ROUND(6);
1082  BLAKE2S_ROUND(7);
1083  BLAKE2S_ROUND(8);
1084  BLAKE2S_ROUND(9);
1085 
1086  VecStore32LE(state.h()+0, VecXor(ff0, VecXor(row1, row3)), le_mask);
1087  VecStore32LE(state.h()+4, VecXor(ff1, VecXor(row2, row4)), le_mask);
1088 }
1089 #endif // CRYPTOPP_ALTIVEC_AVAILABLE
1090 
1091 NAMESPACE_END
Classes for BLAKE2b and BLAKE2s message digests and keyed message digests.
Library configuration file.
unsigned int word32
32-bit unsigned datatype
Definition: config_int.h:72
unsigned long long word64
64-bit unsigned datatype
Definition: config_int.h:101
Utility functions for the Crypto++ library.
Crypto++ library namespace.
Precompiled header file.
Support functions for PowerPC and vector operations.
__vector unsigned int uint32x4_p
Vector of 32-bit elements.
Definition: ppc_simd.h:202
T1 VecPermute(const T1 vec, const T2 mask)
Permutes a vector.
Definition: ppc_simd.h:1478
__vector unsigned char uint8x16_p
Vector of 8-bit elements.
Definition: ppc_simd.h:192
T1 VecXor(const T1 vec1, const T2 vec2)
XOR two vectors.
Definition: ppc_simd.h:1414
#define CONST_V8_CAST(x)
Cast array to vector pointer.
Definition: ppc_simd.h:145
void VecStore(const T data, byte dest[16])
Stores a vector to a byte array.
Definition: ppc_simd.h:895
uint32x4_p VecLoad(const byte src[16])
Loads a vector from a byte array.
Definition: ppc_simd.h:369
BLAKE2s state information.
Definition: blake2.h:164